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a b s t r a c t 

Treatment design for musculoskeletal disorders using in silico patient-specific dynamic simulations is be- 

coming a clinical possibility. However, these simulations are sensitive to model parameter values that are 

difficult to measure experimentally, and the influence of uncertainties in these parameter values on the 

accuracy of estimated knee contact forces remains unknown. This study evaluates which musculoskeletal 

model parameters have the greatest influence on estimating accurate knee contact forces during walking. 

We performed the evaluation using a two-level optimization algorithm where musculoskeletal model pa- 

rameter values were adjusted in the outer level and muscle activations were estimated in the inner level. 

We tested the algorithm with different sets of design variables (combinations of optimal muscle fiber 

lengths, tendon slack lengths, and muscle moment arm offsets) resulting in nine different optimization 

problems. The most accurate lateral knee contact force predictions were obtained when tendon slack 

lengths and moment arm offsets were adjusted simultaneously, and the most accurate medial knee con- 

tact force estimations were obtained when all three types of parameters were adjusted together. Inclu- 

sion of moment arm offsets as design variables was more important than including either tendon slack 

lengths or optimal muscle fiber lengths alone to obtain accurate medial and lateral knee contact force 

predictions. These results provide guidance on which musculoskeletal model parameter values should be 

calibrated when seeking to predict in vivo knee contact forces accurately. 

© 2020 IPEM. Published by Elsevier Ltd. All rights reserved. 
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. Introduction 

Roughly 10% of the European population over age 60 is af-

ected by osteoarthritis [1] , with the knee being one of the joints

ost commonly affected. Those with knee osteoarthritis often suf-

er pain and loss of function [2] , which in turn affects their abil-

ty to perform activities of daily living. While increased age is a

ontributing factor for knee osteoarthritis, the causes and evolution

f this disease are not yet fully understood [3] . Though treatment

f knee osteoarthritis could be improved if knee contact forces

ould be predicted accurately for individual subjects, the ability

o generate reasonably accurate predictions remains an open re-

earch question [4] , especially when medial and lateral knee con-

act forces are predicted simultaneously [5] . 

Few studies have measured in vivo knee contact forces due

o the invasiveness of performing such measurements [6–9] , and

he force measurement in healthy subjects and subjects with
∗ Correspondence address. 

E-mail address: gil.serrancoli@upc.edu (G. Serrancolí). 

e  

n  

ttps://doi.org/10.1016/j.medengphy.2020.09.004 

350-4533/© 2020 IPEM. Published by Elsevier Ltd. All rights reserved. 
steoarthritis remains a currently intractable challenge. Conse-

uently, knee contact forces are most commonly estimated us-

ng dynamic musculoskeletal models that relate measured human

ody movement and external forces to generated internal forces.

xternal forces determine the net superior-inferior force and varus-

algus moment that must be balanced by internal forces from

uscles, articular contact, and ligaments. For a given external load-

ng pattern, muscles will be the main determinants of knee contact

orces [10] . Therefore, the estimation of knee contact forces typ-

cally involves estimation of leg muscle forces, which in turn re-

uires solving an indeterminate problem typically using optimiza-

ion [11–15] or EMG-driven modeling [16–19] methods. The main

ifference between optimization and EMG-driven methods for es-

imating muscle forces is that EMG-driven methods calibrate key

odel parameter values (e.g., optimal muscle fiber length, tendon

lack length) using the subject’s EMG and motion data, while for

ptimization methods, EMG data are not used and model param-

ter values are rarely calibrated. Since leg muscle forces also can-

ot be measured non-invasively in vivo under clinical conditions,

https://doi.org/10.1016/j.medengphy.2020.09.004
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validation of knee contact forces estimated by dynamic muscu-

loskeletal models remains a challenge. 

To complicate matters further, knee contact and leg muscle

forces estimated by musculoskeletal models are sensitive to model

parameter values that are difficult to calibrate using commonly

available experimental data. Several studies have explored the sen-

sitivity of leg muscle force estimates to uncertainties in muscu-

loskeletal model parameter values [20–27] . In contrast, few studies

have investigated the sensitivity of estimated knee contact forces

to uncertainties in model parameter values. Valente et al. [28] con-

cluded that uncertainties in body landmark positions, muscu-

loskeletal geometry, and maximum muscle tension could lead to

differences in predicted total knee contact forces up to 2.1 times

body weight. Similar conclusions (although with a lower variability

in total knee contact forces) were obtained by Navacchia et al. [29] .

Lund et al. [30] suggested that the calibration of the positions and

orientation of the lower body joints would result in more accurate

predictions of total knee contact force. Heller et al. [31] also ana-

lyzed how the axial alignment influenced the knee contact forces.

However, it remains unknown which musculoskeletal model pa-

rameter values affect the model’s ability to predict accurate medial

and lateral knee contact forces. 

This study assesses which musculoskeletal model parameters

have the greatest influence on predicting knee contact force ac-

curately for walking. To this end, we developed a two-level opti-

mization approach that adjusted constant muscle-related param-

eter values in the outer level and time-varying muscle activa-

tions in the inner level. The goal was for the outer-level optimiza-

tion to find model parameter values that would cause the inner-

level optimization to match experimentally measured medial and

lateral knee contact forces [6] without including them anywhere

in the inner-level problem formulation. By using different sets of

outer-level design variables composed of different combinations of

muscle-tendon and geometric parameters, we identified which pa-

rameters should be included as design variables in the outer level

optimization to obtain accurate knee contact force predictions. 

2. Methods 

2.1. Experimental data 

Experimental data for our study were obtained from the fourth

Grand Challenge Competition to Predict In Vivo Knee Loads [6] .

The data consisted of surface marker trajectories, ground reaction

forces, single-plane fluoroscopic knee motion trajectories, and in

vivo knee contact forces for a subject implanted with a force-

measuring tibial prosthesis (gender: male, age: 88 years, mass:

65 kg, height: 166 cm, implanted knee: right). The prosthesis had

four uniaxial load cells located in the four quadrants of the tib-

ial tray [8] . The data used for the study included six normal over-

ground gait trials performed at the subject’s self-selected speed

(1.26 ± 0.03 m/s). Ground reaction forces from three force plates

and in vivo knee contact forces were processed using standard

methods (low-pass filtered at 6 Hz using a fourth-order zero

phase-lag Butterworth filter). 

2.2. Musculoskeletal model 

A subject-specific OpenSim [ 32 , 33 ] musculoskeletal model of

the lower body (pelvis, thigh, shank, and foot) possessing 44

muscle-tendon units per leg (see Table S.1 for muscle names)

was used for this study, as in previous work by members of our

group [34] . The model incorporated subject-specific pelvis and

lower body bone models constructed from subject CT scan data.

Peak isometric force values, optimal muscle fiber length and ten-

don slack length values were derived from the works by Arnold
t al. ( [35,36] ) and scaled following an approach similar to Campen

t al. [26] to avoid infeasible initial guesses (Table S.1.). The left leg

f the scaled model was removed, and the kinematic structure of

he scaled model was modified to possess 23 degrees of freedom

DOFs): three translations and three rotations defining the position

nd orientation of the pelvis with respect to ground, three rota-

ions (flexion, adduction, and rotation) for the hip, three rotations

flexion, adduction, and rotation) and three translations (superior–

nferior, anterior–posterior, and medial–lateral) for the knee, three

otations (flexion, adduction, and rotation) and three translations

superior–inferior, anterior–posterior, and medial–lateral) for the

atella relative to the femur, and two rotations (flexion and ev-

rsion) for the ankle. Patellar flexion motion was prescribed as a

unction of knee angle, as in our earlier work [34] , and the other

atellar degrees of freedom were locked to constant values. 

The OpenSim model was used to calculate joint kinematics,

nverse dynamic joint loads, muscle-tendon kinematics and mo-

ent arms, and ultimately knee contact forces for each gait trial

sing the available experimental data. Detailed knee kinematics

ere obtained by combining fluoroscopy, marker motion, and knee

ontact force data using pose estimation analyses performed with

n elastic foundation contact model. Given the knee flexion an-

le time history from an initial inverse kinematics analysis, and

nternal-external rotation and anterior-posterior translation time

istories from fluoroscopy data, the pose estimation algorithm es-

imated the superior-inferior and medial-lateral translation and

arus-valgus rotation time histories. This algorithm matched the

xperimental medial and lateral knee contact forces while min-

mizing the mediolateral contact force. A more detailed descrip-

ion can be found elsewhere [37] . Remaining joint kinematics of

he model were calculated using OpenSim inverse kinematics anal-

ses. Net loads acting at the lower body joints were calculated

sing OpenSim inverse dynamics analyses, where the input joint

inematics were low-pass filtered at 6 Hz (four-order zero phase-

ag Butterworth filter). Muscle-tendon lengths, velocities, and mo-

ent arms were calculated using OpenSim muscle analyses. Once

uscle forces were estimated using the two-level optimization ap-

roach described below, muscle force contributions to the net knee

uperior-inferior force and the net knee adduction moment were

btained using the calculated moment arms. Knee contact force

ontributions to the same two net knee loads were estimated by

ubtracting the calculated muscle force contributions from the net

oads, where ligament contributions to net knee loads were as-

umed to be zero, as in previous work by our group [34] . Me-

ial and lateral knee contact forces were then calculated from the

uperior-inferior knee contact force and varus-valgus knee contact

oment using validated regression relationships reported by Zhao

nd co-workers [38] . 

.3. Optimization problem formulation 

A two-level static optimization procedure was developed in

atlab (The Mathworks, Natick, MA) to analyze how the accuracy

f model-predicted medial and lateral knee contact forces were af-

ected by the calibration of different types of model parameter val-

es (i.e., optimal muscle fiber lengths, tendon slack lengths, and

oment arm offsets). The outer level used Matlab’s trust region

eflective nonlinear least-squares algorithm [39] to adjust specified

ypes of model parameter values so as to match the experimen-

ally measured medial and lateral knee contact forces as closely

s possible. Design variables for optimal muscle fiber lengths and

endon slack lengths were scale factors (one per muscle) that mul-

iplied the scaled literature values, while design variables for mo-

ent arm offsets (one per muscle per spanned joint) were con-

tant values added to the moment arms obtained from OpenSim.

he cost function used quadratic error terms to track the in vivo
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Table 1 

Musculoskeletal parameters values considered in each problem formulation. DV stands for design variables. 

Problem 

number 

Musculoskeletal parameters values 

Scale factors of optimal fiber lengths Scale factors of tendon slack lengths Moment arm deviations 

1 DV 1 0 

2 1 DV 0 

3 1 1 DV 

4 DV DV 0 

5 DV 1 DV 

6 1 DV DV 

7, 8, 9 DV DV DV 
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O  

t  
edial and lateral knee contact forces, made maximum normalized

uscle fiber lengths close to one (following the findings of Arnold

nd Delp [40] ), minimized reserve activations from the inner level,

inimized scale factor differences between optimal muscle fiber

ength and tendon slack length for each muscle, and minimized

oment arm offsets (see Section S.2 for a detailed formulation). 

Given the current guess for model parameter values from the

uter level (muscle fiber lengths, tendon slack lengths and muscle

oment arms offsets), the inner level optimization used Matlab’s

uadratic programming algorithm to minimize squared muscle and

eserve activations so as to match six net loads from inverse dy-

amics (3 hip moments, 1 knee moment for flexion-extension, and

 ankle moments) (Section S.3). The contact force contributions to

hose loads were considered to be negligible. Design variables were

ime-varying muscle activations along with reserve activations. The

ost function used quadratic terms to minimize both muscle and

eserve activations. Linear equality constraints were used to match

he six net loads from inverse dynamics. Muscle forces were cal-

ulated using a Hill-type muscle-tendon model with rigid tendon

eveloped in Matlab and possessing continuous force-length and

orce-velocity properties (see De Groote et al. [41] for details). No

nee contact force information was used in the inner level, and

he muscle activations estimated by the inner level were passed

o the outer level for calculating the resulting medial and lateral

nee contact forces. Note that knee adduction and superior-inferior

oment arms were only used to estimate knee contact forces and

ere not used in the inner level optimization. 

The accuracy of predicted knee contact forces when different

ypes of model parameter values were calibrated was investigated

sing a two-step process. First, the complete two-level optimiza-

ion was run using three gait trials together to calibrate the spec-

fied types of model parameters. The output of this optimization

as a calibrated model which, when used in the inner-level opti-

ization, would estimate medial and lateral knee contact forces

s closely as possible for the three selected gait trials (calibra-

ion trials). Second, only the inner-level optimization was run us-

ng three additional gait trials to test the accuracy with which

he previously calibrated model could predict medial and lateral

nee contact forces using non-calibration walking trials (predic-

ion trials). The complete code can be found in the following link:

ttps://github.com/gilserrancoli/mskkneeforces . 

.4. Analyses 

Nine different “calibrate-then test” problems were performed to

valuate how knee contact force prediction accuracy was affected

y the calibrated types of model parameters (see Table 1 ). Unless

therwise noted, initial conditions for each problem were taken

rom the scaled OpenSim model described above. Problems 1 to

 optimized only one type of design variable (muscle fiber lengths,

endon slack lengths, and moment arm offsets, respectively) and

ept the other possible variables constant. Problems 4 to 6 used

wo types of parameters as design variables, as outlined in Table 1 .

roblem 7 used all three types of parameters as design variables.
roblem 8 was a variant of Problem 7 where a common scale fac-

or was used for optimal muscle fiber length and tendon slack

ength for each muscle. Problem 9 was also a variant of Problem

 where the tracking weight for lateral knee contact force was in-

reased by 10% and the tracking weight for medial knee contact

orce was decreased by 10%, since lateral contact force is often

ore difficult to predict accurately than is medial contact force [5] .

ifferent problems used different initial guesses to make use of the

est information available at the start of each problem (see Section

.4 from Supplementary Material). 

For each problem, root mean square (RMS) errors and coeffi-

ient of determination (R 

2 ) values were calculated to compare the

ifferences in magnitude and shape, respectively, between the esti-

ated medial and lateral knee contact forces and their experimen-

al values. 

. Results 

Medial knee contact force was well matched in both shape and

agnitude for all optimization problems in calibration (mean R 

2 ≥
.9 and mean RMS < 105.0 N) and prediction (mean R 

2 ≥ 0.84 and

ean RMS < 133.0 N) trials ( Table 2 ). Lateral contact force was

verall better matched in calibration and prediction trials when

oment arm deviations were included as design variables (Prob-

ems 3 and 5 to 7), especially in terms of shape. For both calibra-

ion and prediction trials, the most accurate matching of medial

orce was obtained when varying all three types of design vari-

bles (Problem 7), whereas the most accurate matching of lateral

orce was obtained when varying only tendon slack lengths and

oment arm deviations (Problem 6). Optimal solutions were only

lightly influenced by initial guess. When different initial guesses

ere used, differences in RMS values of knee contact force for cal-

bration trials were less than 10 N. 

Optimization problems that varied only optimal fiber lengths

Problem 1) or tendon slack lengths (Problem 2) led to the poor-

st results ( Figs. 1–4 and Table 2 ). Estimated contact forces were

imilar for these two problems, with RMS differences between the

wo solutions for calibration and prediction trials being, on aver-

ge, 22.3 N and 7.0 N, respectively, for medial contact force and

5.8 N and 11.8 N, respectively, for lateral contact force. Both opti-

izations overpredicted the second peak of medial contact force in

tance phase (at about 50% of the gait cycle). When moment arm

eviations alone were optimized (Problem 3), total contact force

as matched better than in Problems 1 and 2, especially for cal-

bration trials ( Table 2 ). However, lateral contact force for predic-

ion trials was not matched better than in Problems 1 and 2 (mean

MS error = 141.4 N and mean R 

2 value = 0.37). In Problems 1 to

, estimated lateral contact force had a non-realistic peak at about

0% of the gait cycle. 

The combination of moment arm deviations with optimal

ber lengths (Problem 5) or tendon slack lengths (Problem 6) as

esign variables led to improvements in contact force matching.

ptimization of optimal fiber lengths and tendon slack lengths

ogether (Problem 4) did not improve knee contact force predic-

https://github.com/gilserrancoli/mskkneeforces
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Fig. 1. Calibration Trials for Optimizations 1 to 9. Thick line: mean values of 3 trials, thin lines: ± 2 std. Red: modeled, blue: experimental. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 2. Prediction Trials for Optimizations 1 to 9. Thick line: mean values of 3 trials, thin lines: ± 2 std. Red: modeled, blue: experimental. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Table 2 

Mean and standard deviation RMS errors and R 2 values for each optimization problem (calibration – C – and prediction – P –) used to predict medial, lateral, and total 

contact knee force. 

Problem number Type 

RMS errors (mean ± std) R 2 values (mean ± std) 

Medial Lateral Total Medial Lateral Total 

1 C 104.5 ± 78.3 151.7 ± 32.9 209.1 ± 59.1 0.90 ± 0.70 0.08 ± 0.12 0.82 ± 0.54 

P 133.0 ± 40.3 153.6 ± 41.8 201.2 ± 34.0 0.84 ± 0.19 0.25 ± 0.46 0.82 ± 0.36 

2 C 102.2 ± 75.0 137.7 ± 37.0 201.4 ± 55.2 0.90 ± 0.62 0.23 ± 0.08 0.83 ± 0.40 

P 129.1 ± 44.5 141.5 ± 46.0 200.1 ± 28.3 0.85 ± 0.19 0.36 ± 0.39 0.82 ± 0.25 

3 C 75.9 ± 29.9 103.7 ± 49.4 161.9 ± 60.4 0.95 ± 0.10 0.57 ± 0.13 0.88 ± 0.39 

P 108.5 ± 28.3 141.4 ± 47.6 197.9 ± 61.6 0.89 ± 0.22 0.37 ± 0.39 0.83 ± 0.25 

4 C 99.6 ± 64.7 126.0 ± 40.3 190.7 ± 54.8 0.91 ± 0.48 0.35 ± 0.05 0.85 ± 0.40 

P 114.2 ± 45.2 141.2 ± 42.7 191.3 ± 31.5 0.88 ± 0.23 0.35 ± 0.44 0.83 ± 0.22 

5 C 66.6 ± 25.0 74.7 ± 27.2 119.7 ± 40.4 0.96 ± 0.08 0.78 ± 0.03 0.94 ± 0.19 

P 100.6 ± 24.6 112.3 ± 30.9 168.6 ± 60.4 0.91 ± 0.06 0.58 ± 0.34 0.87 ± 0.15 

6 C 69.1 ± 28.9 69.8 ± 35.4 124.4 ± 39.0 0.95 ± 0.06 0.81 ± 0.02 0.93 ± 0.16 

P 115.2 ± 18.5 93.8 ± 13.2 146.6 ± 52.9 0.88 ± 0.08 0.70 ± 0.23 0.91 ± 0.04 

7 C 59.9 ± 30.4 73.2 ± 26.8 115.2 ± 36.9 0.97 ± 0.07 0.79 ± 0.05 0.94 ± 0.17 

P 93.9 ± 11.2 109.8 ± 26.6 148.8 ± 49.5 0.92 ± 0.11 0.60 ± 0.30 0.90 ± 0.12 

8 C 69.6 ± 29.8 102.0 ± 44.9 152.8 ± 54.2 0.95 ± 0.11 0.59 ± 0.16 0.89 ± 0.30 

P 92.6 ± 27.0 178.8 ± 43.3 186.7 ± 87.5 0.92 ± 0.44 −0.01 ± 0.65 0.85 ± 0.46 

9 C 72.6 ± 29.4 61.1 ± 39.4 121.1 ± 30.7 0.95 ± 0.04 0.86 ± 0.02 0.93 ± 0.10 

P 121.5 ± 3.5 118.8 ± 28.6 167.1 ± 51.1 0.87 ± 0.24 0.56 ± 0.17 0.88 ± 0.13 
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tions with respect to Problem 3. For calibration trials, Problem 4

also overpredicted the second peak of medial force during stance

phase. For calibration and prediction trials, Problem 5 matched

medial forces better, and lateral contact forces worse, than in

Problem 6. Problem 5 matched total contact force better for cali-

bration trials, whereas Problem 6 matched it better for prediction

trials. Both Problems 5 and 6 decreased the erroneous lateral force

peak at 10% of the gait cycle observed in Problems 1 to 4. 

The most accurate tracking of medial contact force was ob-

tained when varying all three types of parameters together (Prob-

lem 7). However, the results of this problem were not better

than in Problem 6 for lateral contact force, which continued to

possess the unrealistic peak at the beginning of stance phase.

When the outer-level cost function weight was increased by 10%

for lateral contact force tracking and decreased by 10% for me-

dial contact force tracking (Problem 9), the matching of lateral

contact force for calibration trials was improved (from mean

RMS error = 73.2 ± 26.8 N and mean R 

2 value = 0.79 ± 0.05

in Problem 7 to mean RMS error = 61.1 ± 39.4 N and mean

R 

2 value = 0.86 ± 0.02 in Problem 9) while matching of medial

contact force worsened slightly (from mean RMS error = 59.9 ±
30.4 N and mean R 

2 value = 0.97 ± 0.07 in Problem 7 to mean

RMS error = 72.6 ± 29.4 N and mean R 

2 value = 0.95 ± 0.04

in Problem 9). Furthermore, tracking of both medial and lateral

contact forces worsened for prediction trials (from medial: mean

RMS error = 93.9 ± 11.2 N and mean R 

2 value = 0.92 ± 0.11,

lateral: mean RMS error = 109.8 ± 26.6 N and mean R 

2 

value = 0.60 ± 0.30 in Problem 7; to medial: mean RMS er-

ror = 121.5 ± 3.5 N and mean R 

2 value = 0.87 ± 0.24, lat-

eral: mean RMS error = 118.8 ± 28.6 N and mean R 

2 value

= 0.56 ± 0.17 in Problem 9). 

Using a common scale factor for optimal fiber lengths and ten-

don slack lengths along with moment arm deviations (Problem 8)

did not improve the results compared to Problems 5 to 7. Specif-

ically, results were not better for either medial and lateral con-

tact force in calibration trials or lateral contact force in prediction

trials (in which the RMS errors were increased more than 60 N).

The variation of these two types of parameter values (fewer design

variables than in Problem 7) was small (less than 3%) compared

to the nominal values in Problems 5 to 7. The variation of optimal

fiber lengths with respect to literature values was 7.4 ± 15.2% and

7.2 ± 21.5% for Problems 5 and 7, respectively, and the variation of

tendon slack lengths was 10.2 ± 12.3% and 5.6 ± 19.8% for Prob-

lems 6 and 7, respectively ( Fig. 5 ). 
Muscle force contributions to medial and lateral knee con-

act force were different for some muscles among the different

ptimization problems. For example, Problem 1 and 7, GasMed

nd Semiten contributions to medial contact force differed by

round 100 N during stance phase ( Fig. 6 ), while VasLat, BFSH

nd GasMed contributions to lateral contact differed by more than

00 N ( Fig. 7 ). Muscle moment arm deviations were lower than

 cm for all muscles ( Fig. 8 ). 

The nested optimization takes between 25 min (when optimiz-

ng only one set of parameters) to 95 min (when optimizing all

hree sets of parameters). The inner level optimization which can

e used to predict muscle activations from previously calibrated

usculotendon parameters takes just 0.09 s to run. 

. Discussion 

This study evaluated which common musculoskeletal model pa-

ameters have the largest influence on predicting knee contact

orces accurately during walking (at both medial and lateral com-

artments). A two-level static optimization procedure was used

o calibrate musculoskeletal parameter values (time independent)

n the outer level and predict muscle activations (time depen-

ent) in the inner level. Comparison of modeled with experimen-

al knee contact forces allowed indirect evaluation of whether the

stimated leg muscle forces were realistic. The differences among

he nine optimization problem formulations involved which types

f parameters (optimal fiber lengths, tendon slack lengths, and/or

oment arm deviations) were allowed to vary. Our results showed

hat inclusion of moment arm deviations as design variables im-

roved calibration of the musculoskeletal model, since it led to

ore accurate knee contact force predictions. Optimizing only op-

imal fiber lengths and tendon slack lengths overpredicted the

econd peak of medial contact force during stance phase. These

esults provide insight into how calibration of different sets of

uscle-related parameter values affect the accuracy of medial and

ateral knee contact force predictions made using musculoskeletal

odels. 

Published studies have reported contradictory results on the

ensitivity of muscle force predictions to errors in muscle-tendon

odel parameter and moment arm values. On the one hand, some

tudies support the idea that the calibration of moment arms does

ot have a significant impact on estimated muscle function [42] ,

ven though moment arm differences can be large when com-

aring generic with patient-specific models [43] . Modenese et al.
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Fig. 3. Mean and standard deviation of the RMS errors for calibration (above) and prediction (below) trials. 
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44] analyzed differences in knee contact force predictions where

ptimal fiber lengths and tendon slack lengths were scaled with a

onstant ratio versus when they were scaled without altering nor-

alized fiber length. The main differences were in the second peak

f total knee contact force during stance phase, which was more

ealistic when the normalized force-length curve was not altered. 

On the other hand, other authors performed sensitivity anal-

ses using Monte-Carlo methods to investigate which parameters

ffect muscle force predictions the most. The previous study most

imilar to ours was the recent work reported by Navacchia and co-

orkers [29] . Using a scaled generic musculoskeletal model with

0 leg muscles, the authors concluded that maximum isometric

orce, muscle lines of action, and joint kinematics had the greatest

nfluence on total knee contact force and varus-valgus contact mo-

ent, while optimal muscle fiber length and tendon slack length

calculated through pennation angle and optimal fiber length) had
ittle influence. Variability in model outputs spanned experimen-

al benchmark measurements well for total knee contact force but

ot for varus-valgus contact moment, suggesting that inaccurate

edial and lateral knee contact forces would have been predicted

n that study. In contrast, our study used a musculoskeletal model

ith subject-specific bone geometry, 44 leg muscles, and subject-

pecific fluoroscopic knee kinematics and concluded that optimal

uscle fiber length, tendon slack length, and moment arm off-

ets were important for predicting medial and lateral knee contact

orce accurately. Thus, only the conclusions regarding moment arm

ffset parameters are consistent with the conclusions of Navacchia

t al. Maximum isometric force was not identified in our study be-

ause it is redundant with muscle activation amplitude for deter-

ination of active muscle force, and muscles in our model pro-

uced little passive force. Inconsistencies between the two stud-

es in identified parameters may be due to differences in model
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Fig. 4. Mean and standard deviation of the R 2 values for calibration (above) and prediction (below) trials. 
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construction and kinematic inputs as well as differences in study

goals (i.e., analysis of knee contact force sensitivity to individual

parameter values, which does not guarantee that accurate knee

contact forces can be achieved, versus evaluation of which param-

eters should be calibrated to predict accurate knee contact forces).

Overall, our study suggests that if three types of model parame-

ter values are well calibrated, a traditional musculoskeletal model

can predict both medial and lateral knee contact force with good

accuracy. 

Other studies, which did not consider moment arm variations,

concluded that tendon slack lengths played a more important role

than optimal muscle fiber lengths when estimating muscle forces

via optimization methods [45] . De Groote et al. [46] observed that

tendon slack lengths generally had more influence than optimal

fiber lengths on estimated muscle forces, though some muscle

forces were sensitive to optimal fiber length values as well. In our
tudy, lateral knee contact force was already estimated accurately

ithout calibrating optimal fiber lengths (Problem 6). When opti-

al fiber lengths were included as design variables (Problem 7),

rediction of medial contact force improved slightly, while predic-

ion of lateral contact force worsened. 

For all of our optimization problem formulations, errors in pre-

icted medial and lateral knee contact forces were of similar or

ower magnitude compared to other studies [ 5 , 47 , 48 ]. Though ex-

erimental knee contact force information was used to calibrate

odel parameter values (outer level optimization), no knee con-

act force information was used when estimating muscle activa-

ions (inner level optimization). Calibrated model parameter values

roduced muscles that operated within physiological ranges [49] in

ll nine optimization problems. We observed that when moment

rm deviations were not included as design variables, the second

eak of medial contact force at about 50% of the gait cycle was
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Fig. 5. Percentage change in optimal muscle fiber lengths and tendon slack lengths with respect to literature values for Problems 5, 6, and 7. Note that the values of muscle 

fiber lengths in Problem 6 and the values of tendon slack lengths in Problem 5 were not changed and equal to the literature values. 



44 G. Serrancolí, A.L. Kinney and B.J. Fregly / Medical Engineering and Physics 85 (2020) 35–47 

Fig. 6. Muscle contributions to medial contact force of a calibration trial in Problems 1 and 7. 

Fig. 7. Muscle contributions to lateral contact force of a calibration trial in Problems 1 and 6. 
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overpredicted, as observed in other studies that did not calibrate

this parameter [ 15 , 44 ]. These findings suggest that existing muscu-

loskeletal model formulations are capable of predicting knee con-

tact forces accurately as long as critical model parameter values

are calibrated properly. 

Differences in estimated knee contact forces can be explained

by variations in a few muscle parameter values, which in turn

are responsible for different muscle contributions to knee contact

force [50] . Overprediction of the second peak of medial force at

about 50% of the gait cycle, especially in problems where no mo-

ment arm deviations were optimized, was due primarily to dif-

ferent GasMed force contributions ( Fig. 6 ). The unrealistic peak

of lateral force obtained at about 10% of the gait cycle in several

formulations was due to different BFSH, GasLat, TFL, and GasMed

force contributions (Fig. 7). As mentioned above, the most impor-

tant design variables were moment arm deviations ( Fig. 8 ), which

were within a physiological range ( < 1 cm) for all muscles in all

problems. However, these small changes affected the optimizations
nough to produce the differences in knee contact force predic-

ions mentioned above. 

Additionally, we tested two common issues in studies dealing

ith muscle and knee contact force prediction. The first issue was

hat lateral contact forces were tracked less accurately than were

edial contact forces [5] . We ran an extra optimization problem

here we increased the weight on lateral force tracking by 10%

nd decreased the weight on medial force tracking by 10%. This

hange improved lateral contact force tracking for calibration tri-

ls, but prediction of both medial and lateral contact forces for

rediction trials was worse than when both forces were weighted

qually. Obtaining accurate lateral contact force predictions re-

ains challenging. More accurate models of the knee, for example

ncluding the lateral collateral ligament (which was not included

n our study), may lead to better lateral contact force predictions.

he second issue was whether scaling optimal muscle fiber lengths

nd tendon slack lengths equally led to comparable results, since

he observed variations in optimal fiber lengths and tendon slack
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Fig. 8. Moment arm deviations for Problems 5, 6, and 7. Note that knee inf-sup “moment arm” is dimensionless. 

l  

c  

s

 

t  

w  

r  

b  

f  

t

 

t  

e  

g  

m  

l  

t  

u  

s  

a  

g  

c  

e

 

a  

l  

p  

c  

n  

H  

s  

t  

t  

m  

t  

t  

w  

e  

p  

8  

t  

t  

a  

s  

f  

j  

d  

m  

s  

s  

t  

t  

m  

i  

s  

d

 

k  
engths were low. However, the results were indeed better when

alibration of these two types of parameters were decoupled, con-

istent with the work of other groups [23] . 

Nevertheless, a proper calibration of musculo-tendon parame-

ers that leads to accurate knee contact forces remains unknown

hen no knee contact force information is available. However, the

esults of this study give insight into which parameters should

e calibrated to obtain accurate medial and lateral knee contact

orces, as well as what are the main muscle force differences ob-

ained when using different sets of design variables. 

A drawback of using non-linear optimization (in our case, in

he outer level) was the fact that the optimization algorithm could

xperience entrapment in local minima, and thus we could not

uarantee that solutions of the two-level optimizations were global

inima. However, we are confident that the muscle activation so-

utions were global minima given a set of musculoskeletal parame-

ers (inner-level optimization), since these solutions were obtained

sing a quadratic programming algorithm and the problem being

olved was convex. To address the local minima issue, we system-

tically started each outer level optimization from different initial

uesses. We chose the solutions that estimated medial and lateral

ontact force magnitudes the best, which also had the best shape

stimates. 

This study had several limitations that should be taken into

ccount. Apart from optimal muscle fiber lengths, tendon slack

engths, and moment arm deviations, other musculoskeletal model

arameters could be calibrated and could influence muscle and

ontact force prediction. For example, parameters related to the

ormalized muscle force-length curve could also be varied [51] .
owever, the chosen parameters were the ones that have been

hown to have the greatest influence on muscle force estima-

ion [45] , and they are also parameters amenable to calibration

hrough EMG-driven modeling methods [16–19] . Maximum iso-

etric forces were not included in the set of design variables since

hey could introduce numerical redundancies with muscle activa-

ions and moment arms. To estimate maximum isometric forces,

e recommend using the scaling methods reported by Handsfield

t al. [52] . As we did an extensive set of analyses in this study, we

erformed our evaluation using experimental data from a single

8-year old subject. Although our single-subject design is a limita-

ion, future work could expand on the promising approaches from

his study with instrumented knee datasets from other subjects

vailable at http://simtk.org/projects/kneeloads . In addition, our re-

ults cannot be easily applied to datasets without in vivo contact

orce measurements. We expect that dynamic variables, such as

oint moments, muscle forces, and knee contact forces, would be

ifferent in other subjects, which would in turn require different

odel parameter values. However, we expect the influence on the

olution of each analyzed parameter type to follow a similar trend,

ince the optimization problem formulation to estimate knee con-

act forces would be the same. It is not known if the results of

he analysis presented here would be similar if non-walking move-

ents were used to assess the calibration approach. In the future,

t would be valuable to repeat the evaluation for other motions

uch as crouch gait, squatting, or stair climbing to evaluate such

ifferences. 

In conclusion, this study demonstrated that medial and lateral

nee contact forces can be estimated accurately using an existing

http://simtk.org/projects/kneeloads
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musculoskeletal model structure as long as model parameter val-

ues are properly calibrated. The most accurate estimates of lateral

knee contact forces, which are the most difficult to match, were

obtained when optimizing tendon slack lengths and moment arm

deviations. In contrast, the most accurate estimates of medial knee

contact forces occurred when optimal muscle fiber lengths, tendon

slack lengths, and moment arm deviations were adjusted simul-

taneously. These conclusions should be taken into account when

selecting the set of musculo-tendon parameters to calibrate when

solving muscle-force sharing problems depending on the purpose

of the study. Based on our results, we suggest calibrating only ten-

don slack lengths and moment arms, since problem formulations

that calibrated these parameters lead to the overall best predic-

tions of both medial and lateral contact forces. A challenge for the

future will be finding ways to calibrate these model parameter val-

ues when in vivo knee contact force measurements are not avail-

able. 
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