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Treatment design for musculoskeletal disorders using in silico patient-specific dynamic simulations is be-
coming a clinical possibility. However, these simulations are sensitive to model parameter values that are
difficult to measure experimentally, and the influence of uncertainties in these parameter values on the
accuracy of estimated knee contact forces remains unknown. This study evaluates which musculoskeletal
model parameters have the greatest influence on estimating accurate knee contact forces during walking.
We performed the evaluation using a two-level optimization algorithm where musculoskeletal model pa-
rameter values were adjusted in the outer level and muscle activations were estimated in the inner level.
We tested the algorithm with different sets of design variables (combinations of optimal muscle fiber
lengths, tendon slack lengths, and muscle moment arm offsets) resulting in nine different optimization
problems. The most accurate lateral knee contact force predictions were obtained when tendon slack
lengths and moment arm offsets were adjusted simultaneously, and the most accurate medial knee con-
tact force estimations were obtained when all three types of parameters were adjusted together. Inclu-
sion of moment arm offsets as design variables was more important than including either tendon slack
lengths or optimal muscle fiber lengths alone to obtain accurate medial and lateral knee contact force
predictions. These results provide guidance on which musculoskeletal model parameter values should be
calibrated when seeking to predict in vivo knee contact forces accurately.

© 2020 IPEM. Published by Elsevier Ltd. All rights reserved.
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1. Introduction osteoarthritis remains a currently intractable challenge. Conse-

quently, knee contact forces are most commonly estimated us-

Roughly 10% of the European population over age 60 is af-
fected by osteoarthritis [1], with the knee being one of the joints
most commonly affected. Those with knee osteoarthritis often suf-
fer pain and loss of function [2], which in turn affects their abil-
ity to perform activities of daily living. While increased age is a
contributing factor for knee osteoarthritis, the causes and evolution
of this disease are not yet fully understood [3]. Though treatment
of knee osteoarthritis could be improved if knee contact forces
could be predicted accurately for individual subjects, the ability
to generate reasonably accurate predictions remains an open re-
search question [4], especially when medial and lateral knee con-
tact forces are predicted simultaneously [5].

Few studies have measured in vivo knee contact forces due
to the invasiveness of performing such measurements [6-9], and
the force measurement in healthy subjects and subjects with
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ing dynamic musculoskeletal models that relate measured human
body movement and external forces to generated internal forces.
External forces determine the net superior-inferior force and varus-
valgus moment that must be balanced by internal forces from
muscles, articular contact, and ligaments. For a given external load-
ing pattern, muscles will be the main determinants of knee contact
forces [10]. Therefore, the estimation of knee contact forces typ-
ically involves estimation of leg muscle forces, which in turn re-
quires solving an indeterminate problem typically using optimiza-
tion [11-15] or EMG-driven modeling [16-19] methods. The main
difference between optimization and EMG-driven methods for es-
timating muscle forces is that EMG-driven methods calibrate key
model parameter values (e.g., optimal muscle fiber length, tendon
slack length) using the subject’s EMG and motion data, while for
optimization methods, EMG data are not used and model param-
eter values are rarely calibrated. Since leg muscle forces also can-
not be measured non-invasively in vivo under clinical conditions,
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validation of knee contact forces estimated by dynamic muscu-
loskeletal models remains a challenge.

To complicate matters further, knee contact and leg muscle
forces estimated by musculoskeletal models are sensitive to model
parameter values that are difficult to calibrate using commonly
available experimental data. Several studies have explored the sen-
sitivity of leg muscle force estimates to uncertainties in muscu-
loskeletal model parameter values [20-27]. In contrast, few studies
have investigated the sensitivity of estimated knee contact forces
to uncertainties in model parameter values. Valente et al. [28] con-
cluded that uncertainties in body landmark positions, muscu-
loskeletal geometry, and maximum muscle tension could lead to
differences in predicted total knee contact forces up to 2.1 times
body weight. Similar conclusions (although with a lower variability
in total knee contact forces) were obtained by Navacchia et al. [29].
Lund et al. [30] suggested that the calibration of the positions and
orientation of the lower body joints would result in more accurate
predictions of total knee contact force. Heller et al. [31] also ana-
lyzed how the axial alignment influenced the knee contact forces.
However, it remains unknown which musculoskeletal model pa-
rameter values affect the model’s ability to predict accurate medial
and lateral knee contact forces.

This study assesses which musculoskeletal model parameters
have the greatest influence on predicting knee contact force ac-
curately for walking. To this end, we developed a two-level opti-
mization approach that adjusted constant muscle-related param-
eter values in the outer level and time-varying muscle activa-
tions in the inner level. The goal was for the outer-level optimiza-
tion to find model parameter values that would cause the inner-
level optimization to match experimentally measured medial and
lateral knee contact forces [6] without including them anywhere
in the inner-level problem formulation. By using different sets of
outer-level design variables composed of different combinations of
muscle-tendon and geometric parameters, we identified which pa-
rameters should be included as design variables in the outer level
optimization to obtain accurate knee contact force predictions.

2. Methods
2.1. Experimental data

Experimental data for our study were obtained from the fourth
Grand Challenge Competition to Predict In Vivo Knee Loads [6].
The data consisted of surface marker trajectories, ground reaction
forces, single-plane fluoroscopic knee motion trajectories, and in
vivo knee contact forces for a subject implanted with a force-
measuring tibial prosthesis (gender: male, age: 88 years, mass:
65 kg, height: 166 cm, implanted knee: right). The prosthesis had
four uniaxial load cells located in the four quadrants of the tib-
ial tray [8]. The data used for the study included six normal over-
ground gait trials performed at the subject’s self-selected speed
(1.26 + 0.03 m/s). Ground reaction forces from three force plates
and in vivo knee contact forces were processed using standard
methods (low-pass filtered at 6 Hz using a fourth-order zero
phase-lag Butterworth filter).

2.2. Musculoskeletal model

A subject-specific OpenSim [32,33] musculoskeletal model of
the lower body (pelvis, thigh, shank, and foot) possessing 44
muscle-tendon units per leg (see Table S.1 for muscle names)
was used for this study, as in previous work by members of our
group [34]. The model incorporated subject-specific pelvis and
lower body bone models constructed from subject CT scan data.
Peak isometric force values, optimal muscle fiber length and ten-
don slack length values were derived from the works by Arnold

et al. ([35,36]) and scaled following an approach similar to Campen
et al. [26] to avoid infeasible initial guesses (Table S.1.). The left leg
of the scaled model was removed, and the kinematic structure of
the scaled model was modified to possess 23 degrees of freedom
(DOFs): three translations and three rotations defining the position
and orientation of the pelvis with respect to ground, three rota-
tions (flexion, adduction, and rotation) for the hip, three rotations
(flexion, adduction, and rotation) and three translations (superior-
inferior, anterior-posterior, and medial-lateral) for the knee, three
rotations (flexion, adduction, and rotation) and three translations
(superior-inferior, anterior-posterior, and medial-lateral) for the
patella relative to the femur, and two rotations (flexion and ev-
ersion) for the ankle. Patellar flexion motion was prescribed as a
function of knee angle, as in our earlier work [34], and the other
patellar degrees of freedom were locked to constant values.

The OpenSim model was used to calculate joint kinematics,
inverse dynamic joint loads, muscle-tendon kinematics and mo-
ment arms, and ultimately knee contact forces for each gait trial
using the available experimental data. Detailed knee kinematics
were obtained by combining fluoroscopy, marker motion, and knee
contact force data using pose estimation analyses performed with
an elastic foundation contact model. Given the knee flexion an-
gle time history from an initial inverse kinematics analysis, and
internal-external rotation and anterior-posterior translation time
histories from fluoroscopy data, the pose estimation algorithm es-
timated the superior-inferior and medial-lateral translation and
varus-valgus rotation time histories. This algorithm matched the
experimental medial and lateral knee contact forces while min-
imizing the mediolateral contact force. A more detailed descrip-
tion can be found elsewhere [37]. Remaining joint kinematics of
the model were calculated using OpenSim inverse kinematics anal-
yses. Net loads acting at the lower body joints were calculated
using OpenSim inverse dynamics analyses, where the input joint
kinematics were low-pass filtered at 6 Hz (four-order zero phase-
lag Butterworth filter). Muscle-tendon lengths, velocities, and mo-
ment arms were calculated using OpenSim muscle analyses. Once
muscle forces were estimated using the two-level optimization ap-
proach described below, muscle force contributions to the net knee
superior-inferior force and the net knee adduction moment were
obtained using the calculated moment arms. Knee contact force
contributions to the same two net knee loads were estimated by
subtracting the calculated muscle force contributions from the net
loads, where ligament contributions to net knee loads were as-
sumed to be zero, as in previous work by our group [34]. Me-
dial and lateral knee contact forces were then calculated from the
superior-inferior knee contact force and varus-valgus knee contact
moment using validated regression relationships reported by Zhao
and co-workers [38].

2.3. Optimization problem formulation

A two-level static optimization procedure was developed in
Matlab (The Mathworks, Natick, MA) to analyze how the accuracy
of model-predicted medial and lateral knee contact forces were af-
fected by the calibration of different types of model parameter val-
ues (i.e., optimal muscle fiber lengths, tendon slack lengths, and
moment arm offsets). The outer level used Matlab’s trust region
reflective nonlinear least-squares algorithm [39] to adjust specified
types of model parameter values so as to match the experimen-
tally measured medial and lateral knee contact forces as closely
as possible. Design variables for optimal muscle fiber lengths and
tendon slack lengths were scale factors (one per muscle) that mul-
tiplied the scaled literature values, while design variables for mo-
ment arm offsets (one per muscle per spanned joint) were con-
stant values added to the moment arms obtained from OpenSim.
The cost function used quadratic error terms to track the in vivo
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Table 1

Musculoskeletal parameters values considered in each problem formulation. DV stands for design variables.

Problem Musculoskeletal parameters values
number Scale factors of optimal fiber lengths

Scale factors of tendon slack lengths

Moment arm deviations

1 DV 1
2 1 DV
3 1 1
4 DV DV
5 DV 1
6 1 DV
7,89 DV DV

0
0
DV
0
DV
DV
DV

medial and lateral knee contact forces, made maximum normalized
muscle fiber lengths close to one (following the findings of Arnold
and Delp [40]), minimized reserve activations from the inner level,
minimized scale factor differences between optimal muscle fiber
length and tendon slack length for each muscle, and minimized
moment arm offsets (see Section S.2 for a detailed formulation).

Given the current guess for model parameter values from the
outer level (muscle fiber lengths, tendon slack lengths and muscle
moment arms offsets), the inner level optimization used Matlab’s
quadratic programming algorithm to minimize squared muscle and
reserve activations so as to match six net loads from inverse dy-
namics (3 hip moments, 1 knee moment for flexion-extension, and
2 ankle moments) (Section S.3). The contact force contributions to
those loads were considered to be negligible. Design variables were
time-varying muscle activations along with reserve activations. The
cost function used quadratic terms to minimize both muscle and
reserve activations. Linear equality constraints were used to match
the six net loads from inverse dynamics. Muscle forces were cal-
culated using a Hill-type muscle-tendon model with rigid tendon
developed in Matlab and possessing continuous force-length and
force-velocity properties (see De Groote et al. [41] for details). No
knee contact force information was used in the inner level, and
the muscle activations estimated by the inner level were passed
to the outer level for calculating the resulting medial and lateral
knee contact forces. Note that knee adduction and superior-inferior
moment arms were only used to estimate knee contact forces and
were not used in the inner level optimization.

The accuracy of predicted knee contact forces when different
types of model parameter values were calibrated was investigated
using a two-step process. First, the complete two-level optimiza-
tion was run using three gait trials together to calibrate the spec-
ified types of model parameters. The output of this optimization
was a calibrated model which, when used in the inner-level opti-
mization, would estimate medial and lateral knee contact forces
as closely as possible for the three selected gait trials (calibra-
tion trials). Second, only the inner-level optimization was run us-
ing three additional gait trials to test the accuracy with which
the previously calibrated model could predict medial and lateral
knee contact forces using non-calibration walking trials (predic-
tion trials). The complete code can be found in the following link:
https://github.com/gilserrancoli/mskkneeforces.

2.4. Analyses

Nine different “calibrate-then test” problems were performed to
evaluate how knee contact force prediction accuracy was affected
by the calibrated types of model parameters (see Table 1). Unless
otherwise noted, initial conditions for each problem were taken
from the scaled OpenSim model described above. Problems 1 to
3 optimized only one type of design variable (muscle fiber lengths,
tendon slack lengths, and moment arm offsets, respectively) and
kept the other possible variables constant. Problems 4 to 6 used
two types of parameters as design variables, as outlined in Table 1.
Problem 7 used all three types of parameters as design variables.

Problem 8 was a variant of Problem 7 where a common scale fac-
tor was used for optimal muscle fiber length and tendon slack
length for each muscle. Problem 9 was also a variant of Problem
7 where the tracking weight for lateral knee contact force was in-
creased by 10% and the tracking weight for medial knee contact
force was decreased by 10%, since lateral contact force is often
more difficult to predict accurately than is medial contact force [5].
Different problems used different initial guesses to make use of the
best information available at the start of each problem (see Section
S.4 from Supplementary Material).

For each problem, root mean square (RMS) errors and coeffi-
cient of determination (R2) values were calculated to compare the
differences in magnitude and shape, respectively, between the esti-
mated medial and lateral knee contact forces and their experimen-
tal values.

3. Results

Medial knee contact force was well matched in both shape and
magnitude for all optimization problems in calibration (mean R? >
0.9 and mean RMS < 105.0 N) and prediction (mean R > 0.84 and
mean RMS < 133.0 N) trials (Table 2). Lateral contact force was
overall better matched in calibration and prediction trials when
moment arm deviations were included as design variables (Prob-
lems 3 and 5 to 7), especially in terms of shape. For both calibra-
tion and prediction trials, the most accurate matching of medial
force was obtained when varying all three types of design vari-
ables (Problem 7), whereas the most accurate matching of lateral
force was obtained when varying only tendon slack lengths and
moment arm deviations (Problem 6). Optimal solutions were only
slightly influenced by initial guess. When different initial guesses
were used, differences in RMS values of knee contact force for cal-
ibration trials were less than 10 N.

Optimization problems that varied only optimal fiber lengths
(Problem 1) or tendon slack lengths (Problem 2) led to the poor-
est results (Figs. 1-4 and Table 2). Estimated contact forces were
similar for these two problems, with RMS differences between the
two solutions for calibration and prediction trials being, on aver-
age, 22.3 N and 7.0 N, respectively, for medial contact force and
35.8 N and 11.8 N, respectively, for lateral contact force. Both opti-
mizations overpredicted the second peak of medial contact force in
stance phase (at about 50% of the gait cycle). When moment arm
deviations alone were optimized (Problem 3), total contact force
was matched better than in Problems 1 and 2, especially for cal-
ibration trials (Table 2). However, lateral contact force for predic-
tion trials was not matched better than in Problems 1 and 2 (mean
RMS error = 141.4 N and mean R? value = 0.37). In Problems 1 to
3, estimated lateral contact force had a non-realistic peak at about
10% of the gait cycle.

The combination of moment arm deviations with optimal
fiber lengths (Problem 5) or tendon slack lengths (Problem 6) as
design variables led to improvements in contact force matching.
Optimization of optimal fiber lengths and tendon slack lengths
together (Problem 4) did not improve knee contact force predic-
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Fig. 1. Calibration Trials for Optimizations 1 to 9. Thick line: mean values of 3 trials, thin lines: + 2 std. Red: modeled, blue: experimental. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 2. Prediction Trials for Optimizations 1 to 9. Thick line: mean values of 3 trials, thin lines: + 2 std. Red: modeled, blue: experimental. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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Table 2

Mean and standard deviation RMS errors and R? values for each optimization problem (calibration - C - and prediction - P -) used to predict medial, lateral, and total

contact knee force.

RMS errors (mean + std)

R? values (mean =+ std)

Problem number Type Medial Lateral Total Medial Lateral Total
1 C 104.5 + 78.3 151.7 £ 32.9 209.1 + 59.1 0.90 + 0.70 0.08 + 0.12 0.82 + 0.54
P 133.0 + 40.3 153.6 + 41.8 201.2 + 34.0 0.84 + 0.19 0.25 + 0.46 0.82 + 0.36
2 C 102.2 £ 75.0 137.7 £ 37.0 201.4 + 55.2 0.90 + 0.62 0.23 + 0.08 0.83 + 0.40
P 129.1 £+ 445 141.5 + 46.0 200.1 + 28.3 0.85 + 0.19 0.36 + 0.39 0.82 + 0.25
3 C 75.9 +29.9 103.7 + 494 161.9 + 60.4 0.95 + 0.10 0.57 £ 0.13 0.88 + 0.39
P 108.5 + 28.3 1414 + 476 1979 + 61.6 0.89 + 0.22 0.37 + 0.39 0.83 + 0.25
4 C 99.6 + 64.7 126.0 + 40.3 190.7 + 54.8 091 + 0.48 0.35 + 0.05 0.85 + 0.40
P 1142 £ 45.2 141.2 £ 42.7 1913 £ 315 0.88 + 0.23 0.35 + 0.44 0.83 £ 0.22
5 C 66.6 + 25.0 74.7 £ 27.2 119.7 + 404 0.96 + 0.08 0.78 + 0.03 0.94 + 0.19
P 100.6 + 24.6 112.3 £ 309 168.6 + 60.4 0.91 + 0.06 0.58 + 0.34 0.87 + 0.15
6 C 69.1 + 28.9 69.8 +35.4 1244 £ 39.0 0.95 + 0.06 0.81 £+ 0.02 0.93 £ 0.16
P 115.2 £ 185 93.8 + 13.2 146.6 + 52.9 0.88 + 0.08 0.70 + 0.23 0.91 + 0.04
7 C 59.9 + 30.4 73.2 + 26.8 115.2 + 36.9 0.97 + 0.07 0.79 + 0.05 0.94 + 0.17
P 939 + 11.2 109.8 + 26.6 148.8 + 49.5 0.92 + 0.11 0.60 + 0.30 0.90 + 0.12
8 C 69.6 + 29.8 102.0 + 44.9 152.8 £+ 54.2 0.95 + 0.11 0.59 + 0.16 0.89 + 0.30
P 92.6 + 27.0 178.8 + 43.3 186.7 + 87.5 0.92 + 0.44 —0.01 + 0.65 0.85 + 0.46
9 C 72.6 +£29.4 61.1 + 39.4 121.1 £+ 30.7 0.95 + 0.04 0.86 + 0.02 0.93 + 0.10
P 1215 £35 118.8 + 28.6 167.1 £51.1 0.87 +£0.24 0.56 + 0.17 0.88 + 0.13

tions with respect to Problem 3. For calibration trials, Problem 4
also overpredicted the second peak of medial force during stance
phase. For calibration and prediction trials, Problem 5 matched
medial forces better, and lateral contact forces worse, than in
Problem 6. Problem 5 matched total contact force better for cali-
bration trials, whereas Problem 6 matched it better for prediction
trials. Both Problems 5 and 6 decreased the erroneous lateral force
peak at 10% of the gait cycle observed in Problems 1 to 4.

The most accurate tracking of medial contact force was ob-
tained when varying all three types of parameters together (Prob-
lem 7). However, the results of this problem were not better
than in Problem 6 for lateral contact force, which continued to
possess the unrealistic peak at the beginning of stance phase.
When the outer-level cost function weight was increased by 10%
for lateral contact force tracking and decreased by 10% for me-
dial contact force tracking (Problem 9), the matching of lateral
contact force for calibration trials was improved (from mean
RMS error = 73.2 + 26.8 N and mean R? value = 0.79 + 0.05
in Problem 7 to mean RMS error = 611 + 394 N and mean
R? value = 0.86 + 0.02 in Problem 9) while matching of medial
contact force worsened slightly (from mean RMS error = 59.9 +
30.4 N and mean R? value = 0.97 + 0.07 in Problem 7 to mean
RMS error = 72.6 + 29.4 N and mean R? value = 0.95 + 0.04
in Problem 9). Furthermore, tracking of both medial and lateral
contact forces worsened for prediction trials (from medial: mean
RMS error = 93.9 + 11.2 N and mean R2 value = 0.92 + 0.1,
lateral: mean RMS error = 109.8 + 26.6 N and mean R?
value = 0.60 &+ 0.30 in Problem 7; to medial: mean RMS er-
ror = 1215 + 3.5 N and mean R? value = 0.87 + 0.24, lat-
eral: mean RMS error = 118.8 + 28.6 N and mean R? value
= 0.56 & 0.17 in Problem 9).

Using a common scale factor for optimal fiber lengths and ten-
don slack lengths along with moment arm deviations (Problem 8)
did not improve the results compared to Problems 5 to 7. Specif-
ically, results were not better for either medial and lateral con-
tact force in calibration trials or lateral contact force in prediction
trials (in which the RMS errors were increased more than 60 N).
The variation of these two types of parameter values (fewer design
variables than in Problem 7) was small (less than 3%) compared
to the nominal values in Problems 5 to 7. The variation of optimal
fiber lengths with respect to literature values was 7.4 4+ 15.2% and
7.2 + 21.5% for Problems 5 and 7, respectively, and the variation of
tendon slack lengths was 10.2 + 12.3% and 5.6 + 19.8% for Prob-
lems 6 and 7, respectively (Fig. 5).

Muscle force contributions to medial and lateral knee con-
tact force were different for some muscles among the different
optimization problems. For example, Problem 1 and 7, GasMed
and Semiten contributions to medial contact force differed by
around 100 N during stance phase (Fig. 6), while VasLat, BFSH
and GasMed contributions to lateral contact differed by more than
100 N (Fig. 7). Muscle moment arm deviations were lower than
1 cm for all muscles (Fig. 8).

The nested optimization takes between 25 min (when optimiz-
ing only one set of parameters) to 95 min (when optimizing all
three sets of parameters). The inner level optimization which can
be used to predict muscle activations from previously calibrated
musculotendon parameters takes just 0.09 s to run.

4. Discussion

This study evaluated which common musculoskeletal model pa-
rameters have the largest influence on predicting knee contact
forces accurately during walking (at both medial and lateral com-
partments). A two-level static optimization procedure was used
to calibrate musculoskeletal parameter values (time independent)
in the outer level and predict muscle activations (time depen-
dent) in the inner level. Comparison of modeled with experimen-
tal knee contact forces allowed indirect evaluation of whether the
estimated leg muscle forces were realistic. The differences among
the nine optimization problem formulations involved which types
of parameters (optimal fiber lengths, tendon slack lengths, and/or
moment arm deviations) were allowed to vary. Our results showed
that inclusion of moment arm deviations as design variables im-
proved calibration of the musculoskeletal model, since it led to
more accurate knee contact force predictions. Optimizing only op-
timal fiber lengths and tendon slack lengths overpredicted the
second peak of medial contact force during stance phase. These
results provide insight into how calibration of different sets of
muscle-related parameter values affect the accuracy of medial and
lateral knee contact force predictions made using musculoskeletal
models.

Published studies have reported contradictory results on the
sensitivity of muscle force predictions to errors in muscle-tendon
model parameter and moment arm values. On the one hand, some
studies support the idea that the calibration of moment arms does
not have a significant impact on estimated muscle function [42],
even though moment arm differences can be large when com-
paring generic with patient-specific models [43]. Modenese et al.
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Fig. 3. Mean and standard deviation of the RMS errors for calibration (above) and prediction (below) trials.

[44] analyzed differences in knee contact force predictions where
optimal fiber lengths and tendon slack lengths were scaled with a
constant ratio versus when they were scaled without altering nor-
malized fiber length. The main differences were in the second peak
of total knee contact force during stance phase, which was more
realistic when the normalized force-length curve was not altered.
On the other hand, other authors performed sensitivity anal-
yses using Monte-Carlo methods to investigate which parameters
affect muscle force predictions the most. The previous study most
similar to ours was the recent work reported by Navacchia and co-
workers [29]. Using a scaled generic musculoskeletal model with
20 leg muscles, the authors concluded that maximum isometric
force, muscle lines of action, and joint kinematics had the greatest
influence on total knee contact force and varus-valgus contact mo-
ment, while optimal muscle fiber length and tendon slack length
(calculated through pennation angle and optimal fiber length) had

little influence. Variability in model outputs spanned experimen-
tal benchmark measurements well for total knee contact force but
not for varus-valgus contact moment, suggesting that inaccurate
medial and lateral knee contact forces would have been predicted
in that study. In contrast, our study used a musculoskeletal model
with subject-specific bone geometry, 44 leg muscles, and subject-
specific fluoroscopic knee kinematics and concluded that optimal
muscle fiber length, tendon slack length, and moment arm off-
sets were important for predicting medial and lateral knee contact
force accurately. Thus, only the conclusions regarding moment arm
offset parameters are consistent with the conclusions of Navacchia
et al. Maximum isometric force was not identified in our study be-
cause it is redundant with muscle activation amplitude for deter-
mination of active muscle force, and muscles in our model pro-
duced little passive force. Inconsistencies between the two stud-
ies in identified parameters may be due to differences in model
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Fig. 4. Mean and standard deviation of the R? values for calibration (above) and prediction (below) trials.

construction and kinematic inputs as well as differences in study
goals (i.e., analysis of knee contact force sensitivity to individual
parameter values, which does not guarantee that accurate knee
contact forces can be achieved, versus evaluation of which param-
eters should be calibrated to predict accurate knee contact forces).
Overall, our study suggests that if three types of model parame-
ter values are well calibrated, a traditional musculoskeletal model
can predict both medial and lateral knee contact force with good
accuracy.

Other studies, which did not consider moment arm variations,
concluded that tendon slack lengths played a more important role
than optimal muscle fiber lengths when estimating muscle forces
via optimization methods [45]. De Groote et al. [46] observed that
tendon slack lengths generally had more influence than optimal
fiber lengths on estimated muscle forces, though some muscle
forces were sensitive to optimal fiber length values as well. In our

study, lateral knee contact force was already estimated accurately
without calibrating optimal fiber lengths (Problem 6). When opti-
mal fiber lengths were included as design variables (Problem 7),
prediction of medial contact force improved slightly, while predic-
tion of lateral contact force worsened.

For all of our optimization problem formulations, errors in pre-
dicted medial and lateral knee contact forces were of similar or
lower magnitude compared to other studies [5,47,48]. Though ex-
perimental knee contact force information was used to calibrate
model parameter values (outer level optimization), no knee con-
tact force information was used when estimating muscle activa-
tions (inner level optimization). Calibrated model parameter values
produced muscles that operated within physiological ranges [49] in
all nine optimization problems. We observed that when moment
arm deviations were not included as design variables, the second
peak of medial contact force at about 50% of the gait cycle was
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fiber lengths in Problem 6 and the values of tendon slack lengths in Problem 5 were not changed and equal to the literature values.
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overpredicted, as observed in other studies that did not calibrate
this parameter [15,44]. These findings suggest that existing muscu-
loskeletal model formulations are capable of predicting knee con-
tact forces accurately as long as critical model parameter values
are calibrated properly.

Differences in estimated knee contact forces can be explained
by variations in a few muscle parameter values, which in turn
are responsible for different muscle contributions to knee contact
force [50]. Overprediction of the second peak of medial force at
about 50% of the gait cycle, especially in problems where no mo-
ment arm deviations were optimized, was due primarily to dif-
ferent GasMed force contributions (Fig. 6). The unrealistic peak
of lateral force obtained at about 10% of the gait cycle in several
formulations was due to different BFSH, GasLat, TFL, and GasMed
force contributions (Fig. 7). As mentioned above, the most impor-
tant design variables were moment arm deviations (Fig. 8), which
were within a physiological range (< 1 c¢cm) for all muscles in all
problems. However, these small changes affected the optimizations

enough to produce the differences in knee contact force predic-
tions mentioned above.

Additionally, we tested two common issues in studies dealing
with muscle and knee contact force prediction. The first issue was
that lateral contact forces were tracked less accurately than were
medial contact forces [5]. We ran an extra optimization problem
where we increased the weight on lateral force tracking by 10%
and decreased the weight on medial force tracking by 10%. This
change improved lateral contact force tracking for calibration tri-
als, but prediction of both medial and lateral contact forces for
prediction trials was worse than when both forces were weighted
equally. Obtaining accurate lateral contact force predictions re-
mains challenging. More accurate models of the knee, for example
including the lateral collateral ligament (which was not included
in our study), may lead to better lateral contact force predictions.
The second issue was whether scaling optimal muscle fiber lengths
and tendon slack lengths equally led to comparable results, since
the observed variations in optimal fiber lengths and tendon slack
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Fig. 8. Moment arm deviations for Problems 5, 6, and 7. Note that knee inf-sup “moment arm” is dimensionless.

lengths were low. However, the results were indeed better when
calibration of these two types of parameters were decoupled, con-
sistent with the work of other groups [23].

Nevertheless, a proper calibration of musculo-tendon parame-
ters that leads to accurate knee contact forces remains unknown
when no knee contact force information is available. However, the
results of this study give insight into which parameters should
be calibrated to obtain accurate medial and lateral knee contact
forces, as well as what are the main muscle force differences ob-
tained when using different sets of design variables.

A drawback of using non-linear optimization (in our case, in
the outer level) was the fact that the optimization algorithm could
experience entrapment in local minima, and thus we could not
guarantee that solutions of the two-level optimizations were global
minima. However, we are confident that the muscle activation so-
lutions were global minima given a set of musculoskeletal parame-
ters (inner-level optimization), since these solutions were obtained
using a quadratic programming algorithm and the problem being
solved was convex. To address the local minima issue, we system-
atically started each outer level optimization from different initial
guesses. We chose the solutions that estimated medial and lateral
contact force magnitudes the best, which also had the best shape
estimates.

This study had several limitations that should be taken into
account. Apart from optimal muscle fiber lengths, tendon slack
lengths, and moment arm deviations, other musculoskeletal model
parameters could be calibrated and could influence muscle and
contact force prediction. For example, parameters related to the
normalized muscle force-length curve could also be varied [51].

However, the chosen parameters were the ones that have been
shown to have the greatest influence on muscle force estima-
tion [45], and they are also parameters amenable to calibration
through EMG-driven modeling methods [16-19]. Maximum iso-
metric forces were not included in the set of design variables since
they could introduce numerical redundancies with muscle activa-
tions and moment arms. To estimate maximum isometric forces,
we recommend using the scaling methods reported by Handsfield
et al. [52]. As we did an extensive set of analyses in this study, we
performed our evaluation using experimental data from a single
88-year old subject. Although our single-subject design is a limita-
tion, future work could expand on the promising approaches from
this study with instrumented knee datasets from other subjects
available at http://simtk.org/projects/kneeloads. In addition, our re-
sults cannot be easily applied to datasets without in vivo contact
force measurements. We expect that dynamic variables, such as
joint moments, muscle forces, and knee contact forces, would be
different in other subjects, which would in turn require different
model parameter values. However, we expect the influence on the
solution of each analyzed parameter type to follow a similar trend,
since the optimization problem formulation to estimate knee con-
tact forces would be the same. It is not known if the results of
the analysis presented here would be similar if non-walking move-
ments were used to assess the calibration approach. In the future,
it would be valuable to repeat the evaluation for other motions
such as crouch gait, squatting, or stair climbing to evaluate such
differences.

In conclusion, this study demonstrated that medial and lateral
knee contact forces can be estimated accurately using an existing
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musculoskeletal model structure as long as model parameter val-
ues are properly calibrated. The most accurate estimates of lateral
knee contact forces, which are the most difficult to match, were
obtained when optimizing tendon slack lengths and moment arm
deviations. In contrast, the most accurate estimates of medial knee
contact forces occurred when optimal muscle fiber lengths, tendon
slack lengths, and moment arm deviations were adjusted simul-
taneously. These conclusions should be taken into account when
selecting the set of musculo-tendon parameters to calibrate when
solving muscle-force sharing problems depending on the purpose
of the study. Based on our results, we suggest calibrating only ten-
don slack lengths and moment arms, since problem formulations
that calibrated these parameters lead to the overall best predic-
tions of both medial and lateral contact forces. A challenge for the
future will be finding ways to calibrate these model parameter val-
ues when in vivo knee contact force measurements are not avail-
able.
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