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a b s t r a c t

Deformable joint contact models can be used to estimate loading conditions for cartilage–cartilage, implant–

implant, human–orthotic, and foot–ground interactions. However, contact evaluations are often so expensive

computationally that they can be prohibitive for simulations or optimizations requiring thousands or even

millions of contact evaluations. To overcome this limitation, we developed a novel surrogate contact mod-

eling method based on artificial neural networks (ANNs). The method uses special sampling techniques to

gather input–output data points from an original (slow) contact model in multiple domains of input space,

where each domain represents a different physical situation likely to be encountered. For each contact force

and torque output by the original contact model, a multi-layer feed-forward ANN is defined, trained, and

incorporated into a surrogate contact model. As an evaluation problem, we created an ANN-based surrogate

contact model of an artificial tibiofemoral joint using over 75,000 evaluations of a fine-grid elastic founda-

tion (EF) contact model. The surrogate contact model computed contact forces and torques about 1000 times

faster than a less accurate coarse grid EF contact model. Furthermore, the surrogate contact model was seven

times more accurate than the coarse grid EF contact model within the input domain of a walking motion. For

larger input domains, the surrogate contact model showed the expected trend of increasing error with in-

creasing domain size. In addition, the surrogate contact model was able to identify out-of-contact situations

with high accuracy. Computational contact models created using our proposed ANN approach may remove

an important computational bottleneck from musculoskeletal simulations or optimizations incorporating de-

formable joint contact models.

© 2015 IPEM. Published by Elsevier Ltd. All rights reserved.
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. Introduction

Deformable contact models can be incorporated into multi-body

ynamic simulations to compute the loads resulting from surface–

urface interactions. In musculoskeletal biomechanics, the need to

odel deformable contact typically arises when cartilage–cartilage

1–3], implant–implant [4,5], human–orthotic [6,7], and foot–ground

8–11] interactions occur. However, deformable contact models are

omputationally expensive and thus can be prohibitive for studies

hat require large numbers of repeated contact evaluations such as

ptimizations and forward dynamic simulations.

Surrogate contact models can provide one solution to this prob-

em. Surrogate models, also known as meta-models or response sur-

ace approximations, fit or interpolate input–output relationships
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ampled from a “slow” computational model (e.g., a finite element or

lastic foundation contact model). The simplest example of a surro-

ate contact model is a response surface or multiple linear regression

odel, which has been used to calculate cartilage–cartilage contact

orces in a natural tibiofemoral joint [12]. Kriging is a more complex

urrogate modeling technique that has also been used to model con-

act forces and torques in the knee [13]. Kriging-based contact models

ave been used in an optimization approach that predicted muscle

orces, tibiofemoral contact forces, and patellofemoral contact forces

imultaneously in the knee during walking [14]. Other efforts to cre-

te surrogate knee contact models include a Hammerstein–Wiener

odel, a nonlinear autoregressive model with exogenous input, and

time delay artificial neural network [15]. In addition, a surrogate

oot–ground contact model has been created using a lazy learning in-

erpolation method [16].

While each of these surrogate contact modeling methods im-

roves computational speed, each also suffers from important limita-

ions. Kriging-based models suffer from two disadvantages. First, only

relatively low number of sample points can be interpolated given

http://dx.doi.org/10.1016/j.medengphy.2015.06.006
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a computer’s memory resources. As the number of sample points

increases, so does the necessary memory and computation time

required for model construction and use. Second, the most common

implementation of Kriging interpolates the data instead of regressing

it. This property becomes a disadvantage when the data contain

noise, such as with element-based contact models whenever a pro-

portionately small number of elements are loaded (e.g., at low loads

with a coarse mesh). Hammerstein–Weinner, nonlinear autoregres-

sive and time delay ANN models require knowledge of past configu-

rations in time to evaluate the current configuration of the contacting

bodies. This requirement implies that these methods can be used only

in time-incremented analyses. Lazy learning models have the ad-

vantage of bounding the prediction error and adapting to a changing

domain, but these benefits come at the cost of requiring additional

“slow” contact model evaluations during surrogate model use.

To address the need for fast, accurate, and multi-purpose surro-

gate contact models for musculoskeletal simulations and optimiza-

tions, this study explores the use of multi-layer feed-forward ANN

models. ANNs can be formulated as time-independent regression

problems capable of fitting arbitrary observable functions [17]. Feed-

forward ANNs have been used as black box models in previous non-

contact biomechanical simulations to determine multi-dimensional

input–output relationships [18,19] but have not been explored for

deformable contact applications. Our proposed ANN contact model-

ing approach includes a special sampling technique that seeks to im-

prove computational speed and accuracy over existing Kriging-based

schemes. The method also permits fitting many more sample points

than would be possible with Kriging, allowing for varying levels of

accuracy across multiple domains of input space. Furthermore, the

approach fits the sample points via regression rather than interpola-

tion, effectively smoothing noise in the sampled data points [20]. The

computational speed and accuracy of our ANN contact modeling ap-

proach are evaluated using an elastic foundation (EF) contact model

of an artificial tibiofemoral joint.

2. Methods

2.1. Surrogate contact modeling background

The goal of surrogate contact modeling is to replace a computa-

tionally “slow” contact model with a computationally “fast” contact

model that exhibits the same input–output characteristics. This

process involves sampling the computationally expensive model,

henceforth called the original model, using a sampling plan or design

of experiments. Sampling yields a series of sample points that relate

original model inputs to original model outputs. For multi-body

applications, the inputs to the original model are pose parameters

consisting of three translations and three rotations defining the

position and orientation of one contacting body with respect to the

other. The corresponding outputs of the original model are contact

loads consisting of three contact forces and three torques calculated

with respect to a selected point on one of the contacting bodies.

Finally, testing takes place to evaluate the discrepancy between

the original model and the resulting surrogate model using sample

points not included in the surrogate model construction process.

The method presented in this paper builds upon a previous

study to which the reader is referred for further details [13]. A brief

summary of the most relevant concepts is introduced next. The first

concept is that of fixed and moving bodies. The fixed body is the

contacting body that is conceptually considered to remain fixed in

space, while the moving body is the contacting body conceptually

considered to move. The position and orientation of the moving

body with respect to the fixed body are defined by pose parameters

consisting of three translations and three rotations. The second

concept is that of sensitive directions. A sensitive direction is a

degree of freedom (DOF) which when perturbed causes a relatively
arge change in associated contact loads. Every sensitive direction

ossesses an associated sensitive pose parameter and one or more

ssociated sensitive contact loads. For example, if changing the

-translation by a small amount yields a large contact force change

n the y-direction, then y-translation is a sensitive pose parameter

nd y-force is a sensitive load. The third concept is that of a sample

oint. A sample point is defined as a set of model inputs and cor-

esponding outputs. While one would normally expect to use pose

arameters as inputs and loads as outputs, sample point inputs and

utputs are permitted to be any combination of pose parameters and

oads. For example, sample point inputs could be defined as three

otations and three forces. The fourth concept is use of sample point

efinitions that contain sensitive pose parameters as outputs and

he corresponding sensitive loads as inputs. Sampling in this manner

esults in a more desirable distribution of sample points since deeply

nterpenetrating and out-of-contact situations can be avoided. Use

f such a sample point definition requires the original model to be

ampled via repeated static analyses.

.2. Multiple domains

In contrast to surrogate modeling methods such as Kriging, feed-

orward ANNs can fit tens of thousands of sample points. Therefore,

NNs provide the ability to approximate contact models sampled in

variety of configurations that have not been previously considered.

his capability motivates a new sampling approach.

Our sampling strategy consists of combining multiple domains of

nput space, each with a different span and sample point density.

large span minimizes the likelihood of evaluating the surrogate

odel outside the sampled domain, a situation that would lead to

arge prediction errors. A high sample point density leads to low pre-

iction errors within the sampled domain. To maximize model ac-

uracy, we combine sparsely sampled domains having large spans

ith densely sampled domains having limited spans that cover re-

ions of input space likely to be encountered during the activity being

imulated.

To define both types of domains, we introduce the concept of a

eference envelope, which we will use to define the upper and lower

ound of a domain. We obtain multiple time-histories of a pose pa-

ameter or load of interest corresponding to the activity to be simu-

ated. Upper and lower bounds for these curves are defined for each

ime frame. These bounds comprise the reference envelopes that de-

cribe estimated variations in pose parameters and loads of interest

cross the entire motion.

To define a sparsely sampled domain having a large span, we ex-

and the maximum and minimum values of the reference envelopes

cross all time frames by user-specified amounts. The resulting time-

nvariant upper and lower bounds define a domain that forms a large

ix-dimensional (6-D) hypercuboid input space. This space is filled

sing a Hammersley quasirandom sequence [21]. The domain should

xclude physically unrealistic sections of input space corresponding

o contacting surfaces “pulling” on each other.

To define a densely sampled domain having a limited span, we ex-

and the maximum and minimum bounds of the reference envelopes

t each time frame by user-specified amounts. The resulting time-

arying upper and lower bounds define the domain. For each time

rame of the reference motion, we define a 6-D hypercuboid where

ach dimension corresponds to a sample point input. The 64 vertices

f each 6-D hypercuboid are sampled, and the interior of each hyper-

olume is filled using a 6-D Hammersley sequence (Fig. 1). The re-

ulting sample points will be closely packed and will cluster around

he reference envelopes.

Additional domains are added to obtain sample point inputs that

lace the contact surfaces in an “almost unloaded” condition (contact

oundary points) and in an out-of-contact condition. In this way, we

nclude domains to capture specific configurations.
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Fig. 1. Domain sampling using reference envelopes defined by curves of pose param-

eters and/or loads. The displayed three-dimensional sampling analogy describes how

the reference envelopes (gray areas) are expanded and sampled. (a) Envelope magni-

tude “r” at the selected time frame is expanded by a percentage value “p”, but more

generally it could be expanded by a specified offset. (b) At the selected time frame, the

expanded envelope forms a cuboid input space. (c) The vertices of the cuboid are sam-

pled. (d) Finally the volume of the cuboid is sampled using a quasirandom space-filling

method.
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.3. Special case for two contact patches

Contacting bodies possessing two contact patches that are not

close” to one another present a challenge for sampling contact

oundary configurations. These scenarios result in a contact model

aving a rotational sensitive direction. A previous study [13] would

efine the sensitive torque and compressive force as inputs and the

orresponding sensitive rotation and translation as outputs. However,

his combination of inputs does not allow us to specify explicitly con-

act configurations where one contact patch is heavily loaded while

he other one is at the contact boundary. Our solution to this problem

s to replace the input force and torque with two forces acting within

he area of their contact patches. For example, the knee has separate

edial and lateral contact patches, making abduction–adduction ro-

ation and superior–inferior translation sensitive directions. Instead

f using the adduction torque and superior–inferior force as inputs,

e use the vertical medial and lateral forces as inputs.

.4. Sampling

For each combination of load and pose parameter inputs, we ob-

ain corresponding outputs by performing a static analysis. Static

nalyses can be performed via optimization or forward dynamic sim-

lation, both of which fix the moving body pose parameters to those

rom the sample point input. When using optimization, we attempt

o match the loads from the sample point input by varying the pose

arameters from the sample point output. When using forward dy-

amic simulation, we apply the loads from the sample point input to

he moving body, add joint axis damping, and use implicit numerical

ntegration until all accelerations are zero to within a specified toler-

nce. At that point, the model is static and we have found the poses

orresponding to the applied loads.
.5. Surrogate model structure

We construct a surrogate model by interconnecting multiple

NNs, each with multiple inputs and a single output. The inputs

o the surrogate model are pose parameters – three translations

nd three rotations. The outputs of the surrogate model are any

oads that we desire to compute. The proposed surrogate modeling

tructure contains two stages. The first stage consists of k ANNs that

t sensitive loads as a function of the pose parameters, where k is

he number of sensitive directions in the contact model. The second

tage is composed of ANNs that fit the remaining loads as a function

f both pose parameters and sensitive loads calculated in the first

tage. This approach is similar to a previous one [13] except that all

ose parameters are inputs to all ANNs. Unlike in [13], we do not

wap a sensitive pose for a sensitive load as a second stage ANN

nput, since some loads will be zero in out-of-contact configurations.

.6. ANN architecture and training

Each feed-forward ANN within the surrogate model is fully

nterconnected, containing sigmoidal hidden neurons and a single

inear output neuron. We train the ANNs using the batch-mode back-

ropagation Levenberg–Marquardt algorithm. The training process is

rogrammed to stop when one of the following three criteria is met:

1) the training error is below a pre-specified error, (2) the allotted

raining time has been exceeded, or (3) the mean squared error of a

alidation data set has increased consecutively for a specified num-

er of training iterations. The first criterion stops training when the

NN fit is considered to be “good enough,” the second stops training

hen the ANN has exceeded a user-defined training time limit, and

he third stops training when the model begins to overfit the data

22,23].

There are multiple ANN architectures that can yield a satisfactory

unction approximation. We achieve one such architecture by incre-

entally adding neurons and layers. We start by training a single

idden-layer network of a small number of neurons. We train the

NN while keeping track of how the fitting error diminishes with

ime. If we estimate that the fitting error after a certain training

eriod will be above our desired error, then we stop training and

hange the ANN architecture by increasing the number of neurons in

he layer and/or by increasing the number of hidden layers. Adding

ore neurons to each layer and adding more hidden layers increases

he capacity of the ANN to encode the training data.

.7. Surrogate model testing

We calculate the root-mean-square error and maximum absolute

rror for each of the surrogate model outputs using sample points not

sed for training that were kept segregated by domain. This approach

llows us to evaluate accuracy within each domain. We assess com-

utational speed by calculating the average computation time given

series of sample points. Furthermore, we compare the speed of the

urrogate model and original model under simulation conditions.

. Example application

To demonstrate how our ANN-based surrogate contact modeling

pproach works in practice, we applied the methodology to construct

nd evaluate a surrogate contact model of an artificial tibiofemoral

oint. The geometry of the implant components, and the kinematics

nd contact loads needed to define reference envelopes, were taken

rom the First Grand Challenge Competition to Predict In Vivo Knee

oads [24].
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Fig. 2. Implant components for a right knee with coordinate system fixed in the tibial

insert. X points posteriorly, Y points superiorly, and Z points medially. Tens of thou-

sands of static analyses were performed using an elastic foundation contact model to

obtain sample points for surrogate model training.
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3.1. Original TF contact model

The original TF contact model was an EF contact model of the sub-

ject’s implant components (Fig. 2). We treated the femoral compo-

nent as a rigid moving body and the tibial insert as a deformable fixed

body. We selected a fine grid of 80 × 40 elements on each side of the

tibial insert to generate sample points for surrogate model creation

[25]. In the original contact model, the +x direction pointed pos-

teriorly, the +y direction superiorly, and the +z direction medially

(Fig. 2). Euler angles rx, ry, and rz corresponding to an x–y–z body-

fixed rotation sequence defined the orientation of the femoral com-

ponent with respect to the tibial insert. Translations tx, ty, and tz

defined the position of the femoral component origin with respect

to the tibial insert origin. These translations and rotations consti-

tuted the pose parameter inputs to the original model. The EF con-

tact model outputs were the vertical contact loads F med
y and F lat

y for

the medial and lateral compartments, respectively, along with total

contact forces Ftot
x , Ftot

z and total contact torques Ttot
x , Ttot

y , Ttot
z calcu-

lated with respect to the origin of the tibial insert. The vertical con-

tact force was split into medial and lateral components because both

quantities were relevant to our simulation purposes. All contact loads

acted on the tibial insert and were expressed in the coordinate sys-

tem of the tibial insert. For surrogate contact model use, contact loads

of equal magnitude and opposite direction are applied to the femoral

component.

3.2. Sample point definition for TF contact

We selected a sample point definition where the in-

puts were {tx, F med
y , tz, F lat

y , ry, rz} and the outputs were

{Ftot
x , ty, Ftot

z , rx, Ttot
z , Ttot

z }. Had we followed the methodology

of [13], we would have defined the sample point inputs as

{tx, Ftot
y , tz, Ttot

x , ry, rz} because superior–inferior translation ty

and abduction–adduction rotation rx are sensitive directions. This
Table 1

Physical meaning and approximate number of sample poin

required to fit configurations where both the medial and l

boundary (D7).

Domain Physical meaning

D1 Expand gait cycle envelope by ± 20% at each t

D2 Expand gait cycle envelope by ± 100% at each

D3 Expand gait cycle maximum and minimum va

D4 One side out of contact

D5 Both sides out of contact

D6 One side at contact boundary

D7 Both sides at contact boundary
ample point input definition would not have allowed us to prescribe

edial and lateral vertical loads independently. Our new definition

llowed us to sample configurations where one contact patch is

eeply in contact while the other one is at the contact boundary.

.3. Sampling plan for TF contact

We sampled the EF contact model in seven domains labeled

1 through D7, each with physical significance as described below

Table 1). After sampling, we placed 90% of the sample points into a

ingle pool used for surrogate model training. The remaining sample

oints were held back in segregated pools used for surrogate model

esting.

We constructed reference envelopes for four pose parameters

tx, tz, ry, rz) and two contact loads (F med
y , F lat

y ) using 14 gait cycles

rom the selected Knee Grand Challenge data set. For each time frame

f each gait cycle, we used the four load cell measurements from the

nstrumented tibial tray to calculate medial F med
y and lateral F lat

y con-

act force along with anterior–posterior (AP) and medial–lateral (ML)

enter of pressure (CoP) location. We also calculated knee flexion an-

le rz from a marker-based inverse kinematic analysis. After locking

z to this value and ry to the value measured fluoroscopically for a

ingle gait cycle, we performed a pose estimation optimization that

djusted the four free pose parameters such that F med
y , F lat

y , AP CoP lo-

ation, and ML CoP location matched their experimentally measured

alues as closely as possible for the selected time frame. These op-

imizations yielded 14 sets of curves for tx, tz, rz, F med
y , F lat

y and a

ingle curve for ry. The time-varying upper and lower bounds for each

urve were used to define reference envelopes.

Domains D1 and D2 defined sets of sample points that clustered

round the reference kinematic and load envelopes. Domain D1 was

maller and denser than D2 and completely contained within D2. D1

nd D2 were defined as the reference envelopes expanded by ± 20%

nd ± 100%, respectively. For a specific time frame, if the difference

etween the upper and lower bounds for a reference envelope was

elow the mean difference for all time frames, then rather than using

percentage of the envelope, we expanded with an offset of ± 0.5

imes the mean difference for D1 and ± 2 times the mean differ-

ence for D2. This expansion method ensured that the domains were

never too small for time frames that showed below average variabil-

ity. Since there was only one curve for ry, this curve was expanded by

ffsets corresponding to our estimates of variability.

Domain D3 was designed to cover a large input space and was

ormed by expanding the maximum and minimum of each reference

nvelope by ± 25% over the entire gait cycle. The resulting domain

ormed one large 6-D hypercuboid input space which was sampled

sing the Hammersley method.

Domains D4 through D7 addressed out-of-contact and contact

oundary configurations (Fig. 3). Domain D4 corresponded to con-

gurations where either the medial or lateral side was out of con-

act. This domain was obtained by taking points where one of the

ondyles was at the contact boundary, changing rx such that one of

he condyles lifted off, and adjusting ty such that the vertical force
ts in each domain. Relatively few sample points are

ateral sides are out of contact (D5) or at the contact

Approximate No. of sample points

ime frame 24,000

time frame 24,000

lue by ± 25% 24,000

30,000

300

20,000

100
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Fig. 3. Illustration of surface configurations for domains D4–D7 representing out-of-

contact and contact boundary configurations. The flat surfaces represent the tibial in-

sert while the curved surfaces represent the femoral component condyles. Sample

points from these domains could be included due to the high encoding capacity of

feed-forward artificial neural networks.
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n the other condyle remained the same as it was previously. The

hange in rx was performed in three equal increments such that the

aximum liftoff was approximately 2 mm. Domain D5 accounted for

oints where both the medial and lateral sides where out of con-

act. This domain was created by taking points were both condyles

ere at the contact boundary and increasing the vertical translation

y in three increments until achieving a maximum liftoff of approx-

mately 2 mm. All contact loads were zero in this case. Domain D6

onsisted of points where either the medial or lateral side was at the

ontact boundary (i.e., a vertical force of 5 N). Sample points were ob-

ained by performing Hammersley sampling on the pose parameters

nd on one of the vertical contact forces while the other vertical con-

act force remained fixed at 5 N. Lastly, domain D7 consisted of points

here both sides were at the contact boundary. Sample points were

btained by Hammersley sampling only pose parameters while both

he medial and lateral contact forces were fixed at 5 N.

We performed sampling using the optimization approach. The de-

ign variables were ty and rx while the cost function minimized the

ormalized difference between the original model outputs and sam-

le point inputs F med
y and F lat

y . To reduce computation time, we used

coarse grid EF contact model for each optimization and input the

esulting pose into the fine grid EF contact model to obtain the corre-

ponding outputs.

.4. Surrogate model structure for TF contact

The TF surrogate contact model was composed of seven differ-

nt ANN models, each with a single output. The first stage contained

NNs that fit the sensitive forces F med
y and F lat

y as functions of im-

lant pose parameters (Eqs. (1) and (2)). The second stage contained

NNs that fit the remaining load components as a function of all six

ose parameters and sensitive forces F med
y and F lat

y computed from

he first stage (Eqs. (3)–(7)).

med
y = f (tx, ty, tz, rx, ry, rz) (1)

lat
y = f (tx, ty, tz, rx, ry, rz) (2)

tot
x = f

(
tx, ty, tz, rx, ry, rz, F med

y , F lat
y

)
(3)
tot
z = f tx, ty, tz, rx, ry, rz, F med

y , F lat
y (4)

tot
x = f

(
tx, ty, tz, rx, ry, rz, F med

y , F lat
y

)
(5)

tot
y = f

(
tx, ty, tz, rx, ry, rz, F med

y , F lat
y

)
(6)

tot
z = f

(
tx, ty, tz, rx, ry, rz, F med

y , F lat
y

)
. (7)

The vertical contact forces were fit separately for the medial and

ateral sides to allow the evaluation of medial–lateral load split dur-

ng simulations.

.5. Surrogate TF model creation and training

We designed the ANN architectures and performed ANN training

sing a maximum training time stopping criterion of six hours. The

esting error was monitored during training and no overfitting was

bserved. The resulting architecture had four hidden layers of 30 neu-

ons each and a single linear output neuron. All seven ANN models

ere created using Matlab’s Neural Network ToolboxTM (The Math-

orks, Natick, MA).

Each ANN model was fitted to a random subset of approximately

0,000 sample points taken from all seven domains. The seven

rained ANNs were assembled into one Simulink® model, where the

utputs of Eqs. (1) and (2) were used as inputs to Eqs. (3)–(7). If either

f the vertical forces was positive, corresponding to surfaces pulling

n each other, then this force was set to zero. The Simulink model was

xported as C++ code to maximize computational speed.

.6. Surrogate TF model testing

The surrogate contact model was tested using two approaches.

irst, accuracy was tested using 10% of the sample points from within

omains D1 through D7 that were withheld from training. Second,

omputational speed and accuracy were assessed under conditions

imilar to actual simulation of a walking motion. A sequence of poses,

ll within domain D1 and consistent with kinematic data from five

ait trials, was generated for this purpose. Loads corresponding to

hese pose sequences were evaluated using the EF contact model

ith a fine element grid (80 × 40), the EF contact model with a faster

ut less accurate coarse element grid (40 × 30), and the surrogate

ontact model. For both tests, accuracy was assessed by comparing

urrogate model predictions to fine grid EF contact model calcula-

ions, while for the second test, computational speed was assessed

y comparing surrogate model predictions to coarse grid EF contact

odel calculations. All tests were performed on a PC workstation

ith an Intel® Xeon® Quad Core 3.1 GHz processor.

. Results

For the accuracy test spanning all domains, root-mean-square

RMS) errors were all below 15 N for contact forces and below

00 N mm for contact torques. Maximum absolute contact force er-

ors were between 4 N and 250 N, while absolute contact torque

rrors were between 123 N mm and 4929 N mm. RMS and maxi-

um errors increased with domain size (Tables 2 and 3). RMS er-

ors were small for D1 (under 5 N/105 N mm), larger for D2 (under

N/225 N mm), and even larger for D3 (under 15 N/435 N mm). RMS

rrors for out-of-contact points D4 and D5 were relatively small (un-

er 11 N/265 N mm). These RMS errors in compressive force corre-

pond to less than 1% of the peak compressive contact force reported

or walking [26].

For the speed and accuracy test using only domain D1, the aver-

ge computation time per input configuration using the surrogate

odel was 45.5 μs and the RMS error was 2.6 N for contact forces

nd 78 N mm for contact torques. On average, the surrogate contact

odel was approximately 19,000 and 960 times faster than the EF

ontact model with fine and coarse grid, respectively (Table 4). With
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Table 2

Contact force (F) and torque (T) RMS errors for each domain. Errors were calculated between surrogate

contact model and fine grid elastic foundation (EF) contact model. Medial is “med”, lateral is “lat”, and

total is “tot”, while x is anterior–posterior direction, y is superior–inferior direction, and z is medial–

lateral direction.

Domain F med
y (N) F lat

y (N) Ftot
x (N) Ftot

z (N) Ttot
x (N mm) Ttot

y (N mm) Ttot
z (N mm)

D1 4.9 1.9 1.7 1.7 104 43 78

D2 8.1 6.6 4.0 3.8 225 103 182

D3 14 9.6 14 14 433 334 405

D4 10 6.2 9.1 10 245 297 262

D5 3.1 1.2 3.2 5.0 197 63 249

D6 10 5.9 9.9 7.2 302 281 261

D7 5.1 9.3 2.9 4.4 199 102 111

Table 3

Contact force (F) and torque (T) maximum errors for each domain. Errors were calculated between sur-

rogate contact model and fine grid EF contact model. Subscripts and superscripts are as noted in Table 2.

Maximum errors are about an order of magnitude larger than RMS errors indicating that while most test

points are well described by the surrogate model, outliers are also present.

Domain F med
y (N) F lat

y (N) Ftot
x (N) Ftot

z (N) Ttot
x (N mm) Ttot

y (N mm) Ttot
z (N mm)

D1 40 14 18 14 837 427 845

D2 51 94 61 24 1587 901 1367

D3 126 124 114 249 4656 4582 3609

D4 92 63 184 115 1352 3787 3815

D5 10 4.0 7.6 13 451 123 865

D6 71 54 109 119 2859 4929 1401

D7 14 23 7.0 12 457 288 237

Table 4

Speed and accuracy comparison between surrogate and EF contact models. Errors were calculated

by comparing surrogate model outputs to fine grid EF contact model outputs for sequences of poses

corresponding to realistic walking kinematics from within domain D1.

Model Average computation time (ms) Average absolute error (N)/(N mm)

Fine grid EF contact 860.6 –

Coarse grid EF contact 43.8 20.4/574

Surrogate 4.55 × 10−2 2.56/77.7

o

e

c

s

b

t

b

l

i

o

n

m

h

fi

F

b

t

t

p

q

s

t

r

o

a

D

the fine grid EF contact model as a baseline, the surrogate contact

model produced average RMS errors approximately 8 times lower for

contact forces and 7 times lower for contact torques than those pro-

duced by the coarse grid EF contact model (Table 4).

4. Discussion

The goal of this study was to develop a surrogate contact model-

ing method that is fast, accurate, and does not require a pose history

to calculate contact loads for the current pose. For the artificial

tibiofemoral joint example application, our proposed ANN-based

method performed extremely well. It achieved the rare combination

of decreased computational speed and increased accuracy compared

to our elastic foundation modeling methods [25]. In particular, it

was approximately 1000 times faster and seven times more accurate

than the EF contact model with coarse element grid, which is the

model we have used most frequently in the past. We would expect

our surrogate model to be about 50,000 times faster than a finite

element contact model [27]. Thus, we anticipate that this new model

formulation will perform extremely well when used in forward or

inverse dynamic simulations and in optimizations.

The reported error trends were expected since the smaller do-

mains were sampled more densely than were the larger domains.

ANNs allowed for this type of clustering since all fitted points had the

same weight in the training algorithm. Small errors for contact tran-

sition and out-of-contact points suggest that liftoff can be predicted

accurately with this approach – a capability lacking in our previous

Kriging-based method. This improvement will likely add robustness

to future dynamic contact simulations and contact optimizations.
Our prediction errors should be interpreted in light of the number

f sample points assigned to each domain. In the tibiofemoral joint

xample application, the number ranged from 20,000 to 30,000 ex-

ept for D5 and D7, which had only 300 and 100 sample points, re-

pectively. Few sample points were assigned to domain D7 because

oth vertical forces F med
y and F lat

y were predetermined to be 5 N (con-

act boundary), hence the six-dimensional sample space effectively

ecome four-dimensional. For domain D5, where both the medial and

ateral condyles were out of contact, our surrogate contact model was

nsensitive to the specified pose parameter values since that region of

utput space was flat (all loads were zero). Hence fewer points were

eeded to maintain good accuracy.

We believe that this method will work well for surrogate contact

odeling of numerous anatomical joints such as the patellofemoral,

ip, and glenohumeral joints. The key issue will be specification of the

xed and moving bodies and the corresponding sensitive directions.

or the patellofemoral joint, one could define the patella as the fixed

ody with medial–lateral translation and anterior–posterior transla-

ion as sensitive pose parameters. For the hip joint, one could define

he hip socket as the fixed body and all translations as sensitive pose

arameters. Calculation of medial and lateral contact forces is not re-

uired while applying our method to other joints.

As with any computational method, our ANN-based method pos-

esses important limitations. First, reference kinematics are needed

o bound domains where high accuracy is desired. It would not be

easonable to expect D1-type accuracy when simulating kinematics

r loading conditions outside the D1 domain. Second, sampling

nd fitting tens of thousands of sample points is time intensive.

epending on the speed of the contact model being sampled, it could
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[

ake days to generate the required data. Moreover, training ANNs

onsumes a considerable amount of computation time. Third, unlike

ocal interpolation methods, ANNs do not provide error estimates.

onsequently, if an ANN-based surrogate model is used outside the

ampled domains, the user has no way to know that the outputs are

nvalid.

The feed-forward ANN-based method presented in this study re-

ulted in a fast and accurate surrogate knee contact model that is flex-

ble enough to be used in a variety of applications. Use of ANN-based

urrogate contact models could allow researchers to eliminate the

omputational bottleneck caused by expensive contact evaluations

n musculoskeletal simulations and optimizations. Future work will

tilize this method to create surrogate contact models for use within

imulations that estimate muscle and contact forces simultaneously

n the lower limb.
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