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a b s t r a c t

Contact occurs in a wide variety of multibody dynamic systems, including the human musculoskele-
tal system. However, sensitivity and optimization studies of such systems have been limited by the
high computational cost of repeated contact analyses. This study presents a novel surrogate modeling
approach for performing computationally efficient three-dimensional elastic contact analyses within
multibody dynamic simulations. The approach fits a computationally cheap surrogate contact model to
data points sampled from a computationally expensive elastic contact model (e.g., a finite element or
elastic foundation model) and resolves several unique challenges involved in applying surrogate model-
ing techniques to elastic contact problems. As an example application, we performed multibody dynamic
simulations of a Stanmore wear simulator machine using surrogate and elastic foundation (EF) contact
models of a total knee replacement. Accuracy was assessed by performing eleven dynamic simulations
with both types of contact models utilizing large variations in motion and load inputs to the machine.
Wear volumes predicted with the surrogate contact models were within 1.5% of those predicted with
the EF contact models. Computational speed was assessed by performing five Monte Carlo analyses (over

1000 dynamic simulations each) with surrogate contact models utilizing realistic variations in motion
and load inputs. Computation time was reduced from an estimated 284 h per analysis with the EF con-
tact models to 1.4 h with the surrogate contact models (i.e., 17 min vs. 5 s per simulation), with higher
wear sensitivity observed for motion variations than for load variations. The proposed surrogate mod-
eling approach can significantly improve the computational speed of multibody dynamic simulations

nsion
incorporating three-dime

. Introduction

Multibody dynamic simulation of systems experiencing contact
s valuable for engineering applications ranging from the design
f industrial machines and mechanisms to the analysis of human
oints. Computational contact models used to perform such simu-
ations generally fall into two categories: rigid or deformable [1,2].
igid body contact models use unilateral constraints to maintain
ontact between opposing surfaces and are highly efficient compu-

ationally for predicting motion [3]. However, they do not permit
alculation of unique contact forces under statically indeterminate
onditions, such as when contact occurs in two or more places
etween the same pair of contacting bodies [4]. Furthermore, they
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al elastic contact models with general surface geometry.
© 2010 IPEM. Published by Elsevier Ltd. All rights reserved.

often require different computational schemes to simulate contin-
uous contact versus intermittent impact.

In contrast, deformable body contact models, such as finite
element models [5–14] and elastic foundation models [15–22],
provide a unified approach for simulating continuous contact ver-
sus intermittent impact, and they can calculate unique contact
forces in statically indeterminate situations. Furthermore, they
permit calculation of contact pressures and strains across the
opposing surfaces. Unfortunately, the high computational cost of
deformable body contact analyses, particularly due to extensive
repeated geometry evaluations, significantly limits their use in
multibody dynamic simulations [16,20]. Thus, no contact model-
ing approach currently exists that provides the functional benefits
of deformable body contact methods along with the computational

speed of rigid body contact methods.

In other engineering disciplines, surrogate modeling approaches
have been used successfully to overcome similar computational
challenges [23–29]. These approaches replace a computationally
costly original model (e.g., a finite element model) with a com-

d.
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utationally cheap surrogate model fitted to data points sampled
rom the original model. Once constructed, the surrogate model
s used in place of the original model to eliminate computa-
ional bottlenecks. Only a small number of studies have applied
urrogate modeling techniques to contact problems [30–34].
owever, none of these studies have addressed how surrogate
ontact modeling approaches can be applied to three-dimensional
3D) multibody dynamic simulations. In particular, no study has
esolved how sampling should be performed, since many sample
oint combinations will result in physically undesirable situations
here the contacting bodies are either out of contact or deeply
enetrating.

This study proposes a novel method for performing compu-
ationally efficient 3D elastic contact analyses within multibody
ynamic simulations, thereby eliminating contact analyses as a
omputational bottleneck. The method is based on surrogate mod-
ling techniques augmented with two key concepts – “sensitive
irections” and a “reasonable design space” [27] – to address the
nique challenges posed by elastic contact problems. The accuracy
nd computational speed of the method are evaluated by perform-
ng thousands of multibody dynamic wear simulations for a total
nee replacement (TKR) design tested in a Stanmore knee simulator
achine.

. Methods

.1. Surrogate contact model concepts

The 10 concepts listed below provide the foundation for creat-
ng a surrogate contact model that can calculate contact loads (and
ossibly other quantities of interest) for a single contact occurring
etween a single pair of bodies:

(1) A three-dimensional frictionless elastic contact model (i.e., the
“original model”) is the computationally costly model to be
replaced with a computationally cheap surrogate model.

(2) One of the contacting bodies is treated as the master body and
the other as the slave body, where both bodies possess general
surface geometry and material properties.

(3) The pose of the slave body relative to the master body is
defined by six pose parameters (i.e., three translations x, y,
z along with three rotations ˛, ˇ, � using a specified rotation
sequence).

(4) For each combination of six pose parameters there exists a
unique combination of six contact loads (i.e., three forces Fx,
Fy, Fz and three torques T˛, Tˇ, T� ) applied to the two contacting
bodies in an equal and opposite sense.

(5) For any pose, each contact load is most sensitive to changes in
the corresponding pose parameter (e.g., Fy is most sensitive to
changes in y).

(6) A “sample point” is any combination of six pose and load
inputs to the original model (e.g., x, Fy, z, ˛, ˇ, �) for which
the six corresponding load and pose outputs are desired (e.g.,
Fx, y, Fz, T˛, Tˇ, T� ).

(7) A sample point is labeled as “desirable” when it produces con-
tact load and pose outputs that are all within some pre-defined
bounds. If any load or pose output is outside the pre-defined
bounds, the sample point is labeled as “undesirable.”

(8) Given a large number of sample points, repeated static anal-

yses can be performed with the original model to generate
input–output relationships to be fitted by the surrogate model.

(9) A surrogate contact model is actually a collection of six sepa-
rate surrogate models – one for each of the six contact loads
as a function of the six pose parameters.
& Physics 32 (2010) 584–594 585

(10) Quantities other than contact loads can also be fitted as sur-
rogate model outputs (e.g., maximum and average contact
pressure, contact area, center of pressure location).

2.2. Surrogate contact model development

Application of surrogate modeling techniques to 3D elastic con-
tact problems poses a number of unique challenges. To address
these challenges, which are described in the current section, we
have developed special surrogate model creation methods. These
methods are based on the ten concepts listed in the previous section
and are organized into a five-step process.

2.2.1. Step (1): identify sensitive and insensitive directions in the
original contact model

The surrogate model creation process involves performing
repeated computational experiments with the original contact
model to generate input–output pairs to be fitted by the surro-
gate contact model. The combinations of inputs to be analyzed
are selected using design of experiments (DOE), which employs
statistical methods to scatter sample points uniformly throughout
a bounded six-dimensional design space. Within the context of a
multibody dynamic simulation, the desired inputs to a 3D elastic
contact model are the six pose parameters and the desired outputs
are the six contact loads [16]. Thus, using a traditional DOE sam-
pling method, sample points would be combinations of the six pose
parameters x, y, z, ˛, ˇ, � , with an upper and lower bound placed
on each one. The problem with this approach is that physically
realistic contact occurs over a thin hypersurface in six-dimensional
pose parameter design space. Consequently, many of the selected
sample points will correspond to situations where the opposing
surfaces are either out of contact or deeply interpenetrating. These
situations are problematic since inclusion of physically unrealis-
tic sample points reduces the accuracy of the resulting surrogate
contact model.

To develop a method for resolving this issue, we propose the
concept of “sensitive directions.” When the master and slave body
are in contact, some contact loads will be highly sensitive to
changes in their corresponding pose parameters, while others will
be insensitive. To quantify these sensitivities, we calculate six
finite-difference derivatives and collect the results in a sensitivity
vector s:

s =
[

∂Fx

∂x

∂Fy

∂y

∂Fz

∂z

∂T˛

∂˛

∂Tˇ

∂ˇ

∂T�

∂�

]
(1)

A direction for which a contact force or torque is sensitive to
changes in the corresponding pose parameter is termed a “sensitive
direction,” and the remaining directions are termed “insensitive
directions.” Due to differences in units, sensitive directions are
evaluated separately for translations (first three entries of s) and
rotations (last three entries of s). If one translational (or rota-
tional) derivative in s is significantly larger than the other two,
the corresponding direction is deemed a sensitive direction. If two
translational (or rotational) derivatives are significantly larger than
the third, then two sensitive directions exist. For some situations
(e.g., conformal contact between a sphere and a spherical cup of
slightly larger radius), all three translational (or rotational) deriva-
tives may be of comparable magnitude, in which case knowledge of

the physical situation must be used to determine whether three or
zero sensitive directions exist. At least one translational sensitive
direction will always exist corresponding to an approximate con-
tact normal direction, and two or more sensitive directions may
exist depending on the geometry of the contacting bodies.
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.2.2. Step (2): avoid sample points with undesirable contact load
utputs in sensitive directions by changing the definition of a
ample point

Once sensitive directions have been identified, we modify the
efinition of a sample point such that pose parameters for sensitive
irections are replaced by their corresponding contact loads. For
xample, if y is identified as a sensitive direction, then y would
e replaced with Fy in the sample point definition. With this non-
raditional sampling method, sample points become combinations
f pose parameters and contact loads (e.g., x, Fy, z, ˛, ˇ, �), with an
pper and lower bound placed on each input.

For sampling of the original contact model, use of contact loads
s inputs for sensitive directions has two important consequences.
irst, contact load outputs from the original contact model in the
ensitive directions will be guaranteed to be within their speci-
ed bounds (i.e., no zero or excessively high contact loads). Second,

nputs to the original contact model during sampling (i.e., a com-
ination of pose parameters and loads) will now be different from

nputs to the surrogate contact model during a multibody dynamic
imulation (i.e., pose parameters only). This second consequence
ill influence the fifth step of the surrogate contact model creation
rocess.

.2.3. Step (3): generate sample point input–output pairs by
sing design of experiments and repeated static analyses

Given this modified sample point definition, we generate a spec-
fied number of sample points n using a traditional DOE approach.
ommon approaches include optimal Latin hypercube sampling
35], Hammersley quasirandom (HQ) sampling [36], and face-
entered central composite design [37]. We choose to use HQ
ampling for three reasons. First, HQ sampling provides better uni-
ormity properties than do other sampling techniques for sample
oints generated within a multi-dimensional hypercube [38,39].
econd, HQ sample points are generated sequentially rather than
imultaneously. Thus, the first m sample points from a larger set of
sample points (n > m) will always be approximately equidistant

rom one another and can be used as a subsample. Third, all existing
ample points can be kept if new sample points need to be added.

To evaluate a sample point, we perform a static analysis with
he original contact model. During the analysis, sensitive direc-
ions are left free to equilibrate under the applied loads, while
nsensitive directions are constrained to the specified pose param-
ter values. Once the static configuration is reached, the resulting
ontact loads in the sensitive directions are compared to the corre-
ponding applied loads. If any difference is above 0.1% (i.e., the final
tatic configuration is not truly static), the sample point is deemed
o be undesirable and is discarded.

.2.4. Step (4): eliminate sample points with undesirable contact
oad outputs in insensitive directions by using the concept of a
easonable design space

While changing the definition of a sample point avoids unde-
irable contact load outputs for sensitive directions, undesirable
ontact load outputs for insensitive directions can still occur.
utting bounds on contact load outputs for insensitive directions
rovides an additional avenue for narrowing the sample point
nvelope, thereby improving surrogate model accuracy. Thus, in
ddition to placing physically realistic upper and lower bounds on
he pose parameter and contact load inputs (e.g., x, Fy, z, ˛, ˇ, �), we
lso place physically realistic upper and lower bounds on the cor-
esponding contact load (and if desired, pose parameter) outputs

e.g., Fx, y, Fz, T˛, Tˇ, T� ). These bounds are estimated by performing
ne or more nominal dynamic simulations with the original con-
act model and expanding the observed range of each contact load
utput by some specified percentage p. The resulting range for the
utputs is termed the “reasonable design space” [27,40,41]. Sam-
& Physics 32 (2010) 584–594

ple points whose contact load outputs are outside the reasonable
design space are deemed undesirable and are discarded.

Evaluation of undesirable sample points by the original contact
model would waste a large amount of CPU time performing compu-
tationally costly static analyses whose results would be discarded.
To address this problem, we use an initial coarse surrogate contact
model to eliminate undesirable sample points [42]. This model is
constructed from a subset m of the complete set of n sample points
generated by HQ sampling. These m sample points are then evalu-
ated in a three-step subprocess. First, a static analysis is performed
with the original contact model for each of the m sample points, and
undesirable sample points are identified and eliminated. Second, a
coarse surrogate contact model is created by fitting each of the six
static analysis outputs (e.g., Fx, y, Fz, T˛, Tˇ, T� ) for the remaining
points (<m) as functions of the six static analysis inputs (e.g., x, Fy, z,
˛, ˇ, �). Fitting is performed using Kriging [43], a multi-dimensional
non-uniform interpolation method, since our preliminary studies
revealed that Kriging produces more accurate dynamic simulation
results than do a variety of other surrogate model fitting methods
(e.g., polynomial response surfaces and support vector regression).
Third, the coarse surrogate model is evaluated repeatedly to esti-
mate the outputs for the remaining n–m sample points. Since a large
number of the n–m sample points contain undesirable contact load
outputs, screening these points with the coarse surrogate contact
model provides significant computational savings during surrogate
model construction.

2.2.5. Step (5): construct the final surrogate contact model using
the desirable subset of the original sample points

Fitting the final surrogate contact model to the desirable sub-
set of sample points is complicated by the fact that contact model
inputs and outputs are different for sampling versus use in a
dynamic simulation. To illustrate this issue, we consider an elas-
tic contact model whose only sensitive direction is y translation.
During sampling, inputs to the original contact model would be x,
Fy, z, ˛, ˇ, � while outputs would be Fx, y, Fz, T˛, Tˇ, T� . In contrast,
during a multibody dynamic simulation, inputs to the surrogate
contact model would be x, y, z, ˛, ˇ, � while outputs would be Fx,
Fy, Fz, T˛, Tˇ, T� . This slight change in input and output definitions is
problematic since in pose parameter space, the reasonable design
space is thin and curved, making the fitting process ill conditioned.
The alternative is to calculate contact loads in sensitive directions
by solving a nonlinear root-finding problem (e.g., given x, y, z, ˛, ˇ,
� , find Fy by solving f(x, Fy, z, ˛, ˇ, �) − y = 0.

With this issue in mind, the final surrogate contact model is
created as follows. Repeated static analyses are performed with
the original contact model for all desirable sample points not yet
evaluated. Since these sample points were retained based on ini-
tial surrogate contact model predictions, some of them will have
outputs that are outside the reasonable design space and will be
discarded. The remaining set of desirable sample points (�n) is
used to construct the final surrogate contact model, again using
Kriging. Contact loads corresponding to sensitive directions are fit-
ted as a function of the six pose parameters (e.g., Fy = f(x, y, z, ˛,
ˇ, �)), while contact loads corresponding to insensitive directions
are fitted as a function of contact loads in sensitive directions and
pose parameters in insensitive ones (e.g., Fx = f(x, Fy, z, ˛, ˇ, �)). This
approach eliminates the problem of ill-conditioned fitting as well as
the need to solve a nonlinear root-finding problem for the sensitive
directions. Once a Kriging-based surrogate contact model has been
constructed, it is used to calculate six contact loads at each time

instant during a dynamic simulation given the six pose parameters
for the contacting bodies.

While the surrogate contact modeling approach described
above assumes that only a single contact occurs between each pair
of contacting bodies and that contact loads are the only desired
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Fig. 1. Multibody dynamic model of a commercial knee implant in a Stanmore knee
simulator machine. The tibial insert (bottom) and femoral component (top) each
possess three degrees of freedom (DOFs) relative to ground. Tibial insert DOFs are
anterior–posterior translation x, medial–lateral translation z, and internal–external
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otation ˇ, while femoral component DOFs are superior–inferior translation y,
arus–valgus rotation ˛, and flexion-extension � . The two components interact via
wo contacts, one in the +z direction (medial side) and another in the −z direction
lateral side).

utputs, the approach can be easily extended to more complex situ-
tions. If more than one contact occurs between a pair of contacting
odies, contact loads for each contact can be fitted separately and
hen used together during a multibody dynamic simulation. If addi-
ional contact model outputs are desired (e.g., contact pressures),
hese quantities can be calculated and stored during the sampling
rocess and then fitted as a function of the six pose parameters.
hese extensions will be demonstrated in the practical evaluation
escribed in the following section.

.3. Surrogate contact model evaluation

We evaluated the accuracy and computational speed of our
urrogate contact modeling approach by performing Monte Carlo
nalyses (i.e., thousands of forward dynamic simulations) using
multibody dynamic model of a cruciate-retaining commercial

nee implant (Depuy Orthopedics, Warsaw, IN) mounted in a
tanmore knee wear simulator machine [44]. The goal of the sim-
lations was to predict implant loads, motions, and ultimately
ear volume for realistic variations in motion and load inputs to

he machine. Symbolic dynamics equations for the model were
erived using Kane’s method [50] and Autolev (OnLine Dynam-

cs, Sunnyvale, CA). The model possessed six degrees of freedom
DOFs) relative to ground: tibial anterior–posterior translation x,
ibial medial–lateral translation z, tibial internal–external rotation
, femoral superior–inferior translation y, femoral varus–valgus
otation ˛, and femoral flexion–extension � (Fig. 1). Similar
o an actual Stanmore machine, � was motion controlled, x,
, and ˇ were load controlled, and z and ˛ were left free,
here all controlled quantities used ISO standard input curves

45]. Mass properties were estimated from geometric models
f the implant and machine components. Soft tissue restraints
ere simulated by attaching two spring bumpers to the ante-

ior and posterior sides of the tibial component. The springs
ere attached at the same locations as in the actual simu-

ator machine, and the stiffness of each bi-directional spring
as set to 14.48 N/mm for an effective stiffness of 28.96 N/mm

45].
A 3D elastic foundation (EF) contact model [17,46–49] of the

nee implant was used to calculate contact loads between the
emoral component and tibial insert given the six pose parame-

ers for the contacting bodies. The EF model utilized linear material
roperties (Young’s modulus = 463 MPa, Poisson’s ratio = 0.46 [17])
nd surface geometry taken from manufacturer computer-aided
esign models, with contact occurring on the medial and lat-
ral sides of the tibial insert. The EF contact model and symbolic
& Physics 32 (2010) 584–594 587

dynamics equations were incorporated into a Matlab program (The
Mathworks, Natick, MA) that was used to perform forward dynamic
simulations with Matlab’s stiff numerical integrator ode15s.

We constructed two surrogate contact models – one for the
medial side and another for the lateral side – to replace the elas-
tic foundation contact model within the larger multibody dynamic
model. Though a single surrogate contact model would suffice to
perform dynamic simulations, two surrogate contact models were
needed to calculate wear volume for the medial and lateral sides.
To extend our general approach to two contacts between a single
pair of bodies using a single set of pose parameters, we replaced the
medial and lateral contact loads (i.e., three contact forces and three
contact torques per side) with a single set of mechanically equiva-
lent net contact loads. Sensitive directions and sample points were
defined using these net contact loads, similar to when only a single
contact occurs between a pair of bodies. In contrast, determination
and application of the reasonable design space and construction of
initial and final surrogate contact models were done for the medial
and lateral sides separately.

Below we provide details for how the five-step process
described above was implemented to construct medial and lateral
surrogate contact models and calculate wear volume on each side.

2.3.1. Step (1): identify sensitive and insensitive directions in the
original contact model

To identify sensitive directions, we used a single set of pose
parameters to define femoral pose with respect to the tibial insert.
With the implant components in a nominal anatomic pose and
both sides barely touching, we calculated the sensitivity vector s,
as defined in Eq. (1), using net contact loads and identified two sen-
sitive directions. Specifically, net contact force Fy and net contact
torque T˛ were found to be highly sensitive to small variations in
superior–inferior translation y and varus–valgus rotation ˛, respec-
tively.

2.3.2. Step (2): avoid sample points with undesirable contact load
outputs in sensitive directions by changing the definition of a
sample point

Given these two sensitive directions, we defined sample points
to be combinations of x, Fy, z, T˛, ˇ, � , where net contact loads Fy

and T˛ were calculated from the contact loads on the two sides.
Thus, during the sampling process, a single sample point definition
was used to calculate contact loads on the medial and lateral sides.

2.3.3. Step (3): generate sample point input–output pairs by
using design of experiments and repeated static analyses

To generate input–output pairs with the EF contact model, we
first determined realistic upper and lower bounds on all pose
parameters (one set of six parameters) and contact loads (three sets
of six loads – one set each for net, medial, and lateral loads). Initial
bounds were extracted from 16 dynamic contact simulations per-
formed with the EF contact model. Motion and net load input curves
for the simulations were set to the extremes of their allowable vari-
ations for the subsequent Monte Carlo analyses. Based on previous
experience [33], we expanded these initial bounds by p = 50% to
define a realistic bounded design space for surrogate contact model
creation.

Once these bounds were defined, we used design of experi-
ments and static analyses to develop an initial subset of desirable
input–output pairs. While inputs were defined in terms of net
contact loads, outputs were defined in terms of medial and lat-

eral contact loads. We first generated n = 2000 sample points
using the HQ sampling method (Fig. 2a), where the value for n
was again chosen based on previous experience [33]. From these
2000 sample points, we then selected the first m = 500 points for
static analysis with the EF contact model. For each sample point,
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Fig. 2. Overview of the surrogate model creation process. (a) n points are sampled in the x, Fy , z, T˛ , ˇ, � design space. (b) Static analyses are performed for the first m sample
points using an elastic foundation (EF) contact model. (c) Coarse surrogate contact models are created based on static analysis results for these m sample points. (d) The
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oarse surrogate models are used to predict static analysis results for the remaini
utputs are outside the desirable ranges defined by one or more nominal EF-base
odel for sample points that pass the screening process. (g) Final surrogate contact m
dynamic simulation, surrogate contact models calculate contact forces and torque

nsert.

he static analysis used Matlab’s fsolve root-finding algorithm to
djust the sensitive DOFs in the model so as to equilibrate the
pplied loads with net contact loads calculated from the medial
nd lateral sides. Each static analysis required approximately 24 s
f CPU time on a 3 GHz Pentium IV PC (Fig. 2b). Of the 500
tatic analyses performed, 18 produced final poses where the net
ontact loads Fy and T˛ were not within 0.1% of the correspond-
ng applied loads. Sample points for these failed static analyses

ere discarded, leaving 482 sample points for use in the next
tep.
.3.4. Step (4): eliminate sample points with undesirable contact
oad outputs in insensitive directions by using the concept of a
easonable design space

To estimate which of the 1500 remaining sample points were
ithin the reasonable design space, we constructed two initial
sample points. (e) Sample points are screened and eliminated if their predicted
mic simulations. (f) Additional static analyses are performed with the EF contact

s are created using static analysis results from all retained sample points. (h) During
ied to the two bodies given the pose of the femoral component relative to the tibial

surrogate contact models – one for each side – using the initial
482 desirable sample points. Surrogate model construction was
performed using the DACE Kriging Toolbox for Matlab (Fig. 2c;
[51]). These two surrogate models were then used to predict
EF contact model outputs on the medial and lateral sides for
the remaining 1500 sample points (Fig. 2d). Inputs to the two
surrogate contact models matched the sample point definition
and used net contact loads, while outputs were medial and lat-
eral contact loads. Since outputs from each surrogate contact
model corresponded to a static configuration, no static analy-
ses were required for this step, and the specified bounds on

medial and lateral contact loads were used to eliminate unde-
sirable sample points. Of the 1500 points analyzed, 934 (937)
produced undesirable medial (lateral) outputs, leaving 566 (563)
additional sample points to be evaluated with the EF contact model
(Fig. 2e).
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ig. 3. Comparison of motions predicted by the nominal dynamic simulation perfo
odels (dashed lines).

.3.5. Step (5): construct the final surrogate contact model using
he desirable subset of the original sample points

After determining the intersection of the desirable sample
oints for the medial and lateral sides, we performed 560 additional
tatic analyses with the EF contact model (Fig. 2f). The CPU time
equired for 1060 (=500 + 560) static analyses was approximately
h. After eliminating sample points with undesirable medial or lat-
ral outputs, we were left with 982 (=482 + 500) medial and 1042
=482 + 560) lateral sample points for constructing the final medial
nd lateral surrogate contact models.

Surrogate model construction for each side required fitting the
ix contact loads for that side as an explicit or implicit function
f the six pose parameters, which were the same for both sides
Fig. 2g):

Fy = f (x, y, z, ˛, ˇ, �)
T˛ = f (x, y, z, ˛, ˇ, �)
Fx = f (x, Fy, z, T˛, ˇ, �)
Fz = f (x, Fy, z, T˛, ˇ, �)
Tˇ = f (x, Fy, z, T˛, ˇ, �)
T� = f (x, Fy, z, T˛, ˇ, �)

(2)

ince x, y, z, ˛, ˇ, � are inputs during a dynamic simulation, contact
oads in sensitive directions (i.e., Fy and T˛) were calculated before
ontact loads in insensitive directions. Thus, for the last four quan-
ities, inputs Fy and T˛ were not net loads but rather were the values
alculated for the same side. The two final surrogate contact mod-
ls were composed of two sets of six Kriging models which were
ncorporated into the multibody dynamic model in place of the EF
ontact model (Fig. 2h). During a dynamic simulation, net contact
oads were generated by combining the outputs of the medial and
ateral surrogate contact models.
To calculate medial and lateral wear volume, we created six
dditional surrogate models to fit medial and lateral center of pres-
ure (CoP) location (three components per side). Each surrogate
odel took x, Fy, z, T˛, ˇ, � as inputs, where Fy and T˛ were from

he side being fitted, and was constructed using the same desirable
using the elastic foundation contact model (solid lines) and the surrogate contact

sample points as the medial and lateral surrogate contact models.
The contact force and CoP predictions were then used to calcu-
late medial and lateral wear volume as described previously by Lin
et al. [33]. Briefly, Archard’s wear law [52] with a wear factor of
1 × 10−7 mm3/N m [53] was used to calculate one-cycle wear vol-
ume on each side from the time history of contact force magnitude
and CoP sliding distance. The latter quantity was calculated for each
time frame by multiplying the CoP slip speed by the time increment
used for numerical integration. CoP slip speed was defined as the
magnitude of the CoP velocity in the tibial reference frame, which
was calculated from the six pose parameters and their first time
derivatives by using rigid body kinematics and treating the CoP as
a point fixed in the femoral reference frame [50]. One-cycle wear
volume results were extrapolated to 5 million cycles to emulate a
typical knee implant wear test [6,19].

To evaluate surrogate contact model accuracy, we performed
eleven dynamic wear simulations with the surrogate contact mod-
els and the EF contact model used to create them. A nominal
dynamic simulation was first performed using the ISO standard
input curves and the simulation results from the two models
compared quantitatively. Ten additional EF-based and surrogate-
based dynamic simulations were then performed to evaluate the
extremes in input curve variations used during subsequent Monte
Carlo analyses. Specifically, for each of the five Monte Carlo prob-
lems described below, we performed two dynamic simulations
with each contact model where each input curve represented either
a maximum or minimum variation. The ten pairs of results were
compared quantitatively by calculating root mean square errors
(RMSE) and maximum absolute errors (MAE) for predicted pose
parameters, medial and lateral contact loads, and wear volumes.
The CoP-based approach for calculating wear volume was also eval-

uated by calculating wear volume with the EF model using both an
element-based approach [18,19] and the CoP-based approach [33].

To evaluate surrogate contact model performance, we per-
formed five Monte Carlo analyses to investigate how realistic
variations in motion and load inputs affect predicted wear volume.
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4. Discussion

This paper presented a novel method for performing computa-
tionally efficient elastic contact analyses within multibody dynamic
simulations. The method is derived from surrogate modeling con-

Table 1
Comparison of wear volumes (mm3) predicted by dynamic simulations performed
using the elastic foundation contact model and the surrogate contact model with
load and motion input curves varied to the extremes used in the Monte Carlo
analyses.

Quantity Variation Elastic
foundation
contact model

Surrogate
contact
model

Difference (%)

Fx

Maximum

28.44 28.51 0.24
Fy 30.31 30.27 0.14
Tˇ 18.14 18.24 0.56
� 17.10 17.23 0.72
All 29.76 29.52 0.80

Fx 29.49 29.20 1.02
ig. 4. Comparison of medial and lateral contact forces predicted by the nominal dy
he surrogate contact models (dashed lines).

he first four Monte Carlo analyses varied the three load inputs
nd one motion input separately while the fifth analysis varied all
nput profiles together. Principal component analysis was used to
reate parameterized realistic variations of the input curves based
n experimentally observed variations for eight different implant
esigns tested in a Stanmore simulator machine [33,45]. Each new

nput curve was generated by selecting weights between 0 and 1
or the first two principal components, which captured 98% of the
ariability in each type of curve. Each Monte Carlo analysis was per-
ormed on a 3 GHz Pentium IV PC and involved at least 1000 forward
ynamic simulations utilizing the surrogate contact models. The
onvergence criterion for each analysis was met when the mean
nd coefficient of variation (i.e., 100*standard deviation/mean) for
he last 10% of the wear predictions were within 2% of the final

ean and coefficient of variation [54,55].

. Results

For the accuracy evaluation, the surrogate-based dynamic sim-
lations closely reproduced the contact kinematics, contact loads,
nd wear volumes predicted by the EF-based dynamic simula-
ions (Figs. 3–5). On average, the RMSE and MAE for the 3D
ranslations/rotations were less than 0.2 mm/0.6◦ and 0.3 mm/1.3◦,
espectively. For the medial contact forces/torques, RMSE and
AE were less than 20 N/0.54 N m and 46 N/1.1 N m, respec-

ively, while for the lateral contact forces/torques, they were less
han 20 N/0.56 N m and 41 N/1.1 N m, respectively. For both the
urrogate-based and EF-based dynamic simulations, the CoP-based
pproach for predicting wear volume reproduced the element-
ased EF results to within 2% error (Table 1).

For the performance evaluation, surrogate-based dynamic

imulations were significantly faster than EF-based dynamic sim-
lations. Each forward dynamic simulation performed during a
onte Carlo analysis required approximately 5 s of CPU time,
hereas a single simulation performed with the EF contact model

equired 17 min. Total CPU time to complete one Monte Carlo anal-
simulation performed using the elastic foundation contact model (solid lines) and

ysis was 1.4 h (excluding the 6 h required for surrogate model
creation) compared to an estimated 284 h (11.8 days) with the EF
contact model. The Monte Carlo analyses revealed that wear vol-
ume was more sensitive to realistic changes in input motion than
to realistic changes in input loads (Fig. 6). While 10th to 90th per-
centile wear volume spanned at most 3 mm3 when each input load
was changed separately, it spanned 12 mm3 when only the input
motion was changed. When input motion and loads were changed
simultaneously, the span was increased to 20 mm3, indicating an
interactive effect.
Minimum
Fy 30.19 29.73 1.53
Tˇ 27.63 27.37 0.96
� 27.08 26.90 0.66
All 30.11 30.08 0.10

Fx , Fy , Tˇ , and � are defined based on the generalized coordinates in Fig. 1.
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ig. 5. Comparison of medial and lateral contact torques predicted by the nomina
nd the surrogate contact models (dashed lines).

epts and has the greatest potential value for applications requiring
epeated simulations, such as sensitivity and optimization studies.
urrogate contact models can be fitted to input–output relation-
hips sampled from any elastic contact model (e.g., finite element,
lastic foundation) once sensitive directions have been identified.
he computational cost of using a surrogate contact model is paid
p front when sampling the original contact model via repeated
tatic analysis. Thereafter, computational cost is low since repeated

eometry evaluations and solution of linear or nonlinear systems
f equations are eliminated. The methodology was successfully
pplied to dynamic wear simulation of a commercial knee implant
ested in a Stanmore knee simulator machine. Dynamic simula-
ions performed with the surrogate contact models were highly

ig. 6. Box plot distributions of wear volume predicted by five Monte Carlo anal-
ses performed using repeated dynamic simulations with the surrogate contact
odels. Simulator machine inputs varied by the analyses were anterior–posterior

orce applied to the tibial insert (Fx), superior–inferior force applied to the femoral
omponent (Fy), internal–external torque applied to the tibial insert (Tˇ), and
exion–extension motion applied to the femoral component (�).
mic simulation performed using the elastic foundation contact model (solid lines)

accurate compared to simulations performed with the elastic foun-
dation contact model used to create the surrogates. Even including
the 6 h of CPU time required for surrogate model creation, CPU time
required to perform five Monte Carlo analyses (approximately 13 h)
was over 100 times less than if an elastic foundation contact model
has been used (approximately 1420 h).

Despite its computational benefits, our proposed surrogate con-
tact modeling method possesses at least five important limitations.
First, determination of sensitive directions is influenced by how
coordinate systems are embedded in the master and slave bodies.
For instance, contact force Fy would become sensitive to changes
in X translation as well as to changes in Y translation if the tibial
insert coordinate system was rotated relative to the insert geome-
try by 45◦ about its Z axis. This situation would create unnecessary
coupling between these two directions. To minimize coupling, prin-
cipal component analysis could be used to determine “principal
sensitive directions.” Alternatively, for some geometries, it may be
possible to perform all sampling in force/torque space and then
either swap all contact model outputs and inputs or solve a six-
dimensional root-finding problem for the fitting process. Further
research is required to determine the best way to address potential
coupling effects.

Second, for some geometries, sensitive directions could change
with model pose. One possibility for addressing this issue would be
to allow for different sample point definitions in different regions
of design space. Consider a direction that was initially treated as
insensitive, meaning that poses for that direction were used to
define sample points. With the current “reasonable design space”
approach, if a contact force or torque outside the allowable bounds
was encountered for that direction, we would simply delete that
sample point. However, if we wanted to account for the possibility
that we had encountered a region of design space where this direc-

tion had become sensitive, we could switch from sampling a single
pose value to sampling a series of load values for that one sample
point.

A third limitation is that a new surrogate contact model must
be generated any time the geometries or material properties of the
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ontacting bodies are changed. This limitation is not serious for the
urrent application since recent studies have reported that pre-
icted wear volume (but not wear area and depth) is relatively

nsensitive to whether or not the surface geometry is changed
rogressively over a sequence of wear simulations [6,19]. Further-
ore, this limitation could be overcome by employing geometric

r material parameter values as additional sampled inputs dur-
ng the surrogate model creation process. For geometric changes,

parametric CAD program could be used to create the necessary
eometry for each combination of geometry parameter inputs [31].
or material property changes, a parametric material model could
e used to define linear or nonlinear material properties for each
ombination of material parameter inputs [32]. In both cases, one
ould want the number of new input parameters to be as low

s possible to keep the surrogate contact model fitting process as
imple as possible.

A fourth limitation is that evaluation of surrogate contact model
ccuracy currently requires performing the same dynamic simula-
ion with the computationally expensive contact model. A method
s needed for evaluating the surrogate contact model by itself
part from a dynamic simulation. Standard surrogate model evalu-
tion methods exist, such as calculating errors at additional sample
oints not used for surrogate model creation or performing pre-
iction error sum of squares analysis using the original sample
oints [56]. However, it is difficult to correlate the errors measured
y different evaluation methods with whether or not an accurate
ynamic simulation can be completed with the surrogate contact
odel. One possible alternative is to perform a probabilistic anal-

sis of the pose parameter combinations likely to be encountered
uring a dynamic simulation. Such an analysis could establish mea-
ures for whether or not a sample point has a high likelihood of
eing encountered. Requiring all sample points to have a high like-

ihood would provide greater confidence that the surrogate model
ill produce accurate dynamic simulation results.

A fifth limitation is that the current methodology does not
ccount for friction forces between the contacting surfaces.
owever, it should not be difficult to add a Coulomb fric-

ion model to a surrogate contact model. This comment is
ased on our success, both in the current study and a previ-
us one [33], creating surrogate models to predict CoP location
nd ultimately wear volume accurately. Required inputs to our
oP-based wear volume calculation are the net normal con-
act force applied at the CoP and the slip velocity at the CoP

the same two inputs required for a Coulomb friction model.
hus, at each instant in time during a forward dynamic simu-
ation, it would not be difficult to calculate a Coulomb friction
orce to be applied at the CoP. The friction force at the current
ime instant would then affect the model pose at future time
nstants.

The reasonableness of using coarse surrogate contact models
o filter out undesirable sample points depends on the accuracy
f the filtering process. The coarse surrogate models may have
dentified some desirable points as undesirable and vice versa. To
nvestigate this possibility, we performed a static analysis with
he EF contact model for each of the 1500 sample points fil-
ered using the course surrogate contact models. We found that
% of the sample points identified as undesirable turned out to
e within the reasonable design space. For sample points iden-
ified as desirable, we found that 88% were actually desirable.
hus, while the reasonable design space filtering process was
ot perfect, it was highly effective at identifying desirable and

ndesirable sample points before evaluation with the original
ontact model. If computation time for sample point evaluation
s not of concern, then this filtering step could be omitted and
ll sample points could be evaluated using the original contact
odel.
& Physics 32 (2010) 584–594

Theoretically, three different fitting methods could be used to
develop a surrogate contact model. The first method is consistent
with how a surrogate contact model is used during a dynamic sim-
ulation, where it functions like a nonlinear spring. This method
uses the six pose parameters as inputs and calculates the six con-
tact loads as outputs. The second method is consistent with how
the original surrogate contact model is used during sampling via
repeated static analyses, where sensitive directions are important.
This method uses the two contact loads in sensitive directions and
four pose parameters in insensitive directions as inputs and cal-
culates the two pose parameters in sensitive directions and four
contact loads in insensitive directions as outputs. The third method
is a hybrid of the first two. It calculates contact loads in the two
sensitive directions (i.e., Fy and Tx) using the first method and con-
tact loads in the remaining directions using the second method.
While the first method is the most direct, it produces less accurate
dynamic simulation results than does the hybrid method, possi-
bly because of small fitting errors in the sensitive directions. The
drawback of the second method is that a two-dimensional root-
finding problem must be solved to determine Fy and Tx given
the input values of y and ˛, making the method less appealing
in practice. In our experience, the hybrid method has provided
the best accuracy with the minimum amount of computational
cost.

While this study has demonstrated that surrogate contact
models can be beneficial for sensitivity studies, the greatest com-
putational benefit is likely to occur for optimization studies. For
stochastic sensitivity studies of wear in knee replacements, the
mean value method [57] has successfully reproduced Monte Carlo
wear predictions in only 6% of the computation time, primar-
ily by reducing the number of simulations [58]. In contrast, few
good methods exist for reducing the number of simulations in
optimization studies. For gradient-based optimizations, automatic
differentiation (AD) can be used to replace repeated simulations
required for finite-difference derivatives. Though AD cannot be
used with traditional elastic contact models, it can theoretically
be applied to surrogate contact models, since the input–output
relationships are described by analytic functions. Surrogate con-
tact models can also reduce computation time per simulation if
finite-difference derivatives are used. For example, surrogate con-
tact models recently facilitated simultaneous estimation of muscle
and contact forces in the knee during gait using gradient-based
optimization with finite-difference derivatives [59]. While opti-
mization of a complete gait cycle required approximately 32 h
of CPU time using EF contact models, the same optimization
required only 42 min of CPU time using surrogate contact mod-
els.

On a practical basis, the sensitivity analysis results demon-
strated the importance of closely controlling knee simulator
machine inputs, especially femoral flexion angle. When small vari-
ations were imposed on the input motion and loads, variations in
the femoral flexion angle had the largest influence on predicted
wear volume (Fig. 6). This finding is consistent with two previous
studies that performed probabilistic analyses of knee replacement
wear in a Stanmore simulator machine [33,58].

In summary, this paper has presented a surrogate contact
modeling method that can significantly improve the computa-
tional speed of three-dimensional multibody dynamic simulations.
The accuracy and performance of the method were evaluated
using a combination of dynamic simulations and Monte Carlo
analyses. The approach has the potential to facilitate sensitivity

and optimization studies of multibody dynamic systems incor-
porating elastic contact models, such as musculoskeletal models
incorporating joint contact models, and it may also provide a
computationally efficient means for contact detection within such
systems.



ering

A

C
C

C

R

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[
[

[

[

[

[

[

[

[

[

[

[

[

[
[

[

Y.-C. Lin et al. / Medical Engine

cknowledgments

This work was supported by the National Science Foundation
BET Division under Grant No. 0602996 to B.J.F. and R.T.H. and
AREER Award No. 0239042 to B.J.F.

onflict of interest statement
The authors have no conflict of interest.

eferences

[1] Schiehlen W, Guse N, Seifried R. Multibody dynamics in computational
mechanics and engineering applications. Computer Methods in Applied
Mechanics and Engineering 2006;195:5509–22.

[2] Sharf I, Zhang YN. A contact force solution for non-colliding contact dynamics
simulation. Multibody System Dynamics 2006;16:263–90.

[3] Glocker C. Formulation of spatial contact situations in rigid multibody systems.
Computer Methods in Applied Mechanics and Engineering 1999;177:199–214.

[4] Cheng RC-K, Brown TD, Andrews JG. Non-uniqueness of the bicompartmental
contact force solution in a lumped parameter mathematical model of the knee.
Journal of Biomechanics 1990;23:353–5.

[5] Halloran JP, Easley SK, Petrella AJ, Rullkoetter PJ. Comparison of deformable and
elastic foundation finite element simulations for predicting knee replacement
mechanics. Journal of Biomechanical Engineering 2005;127:813–8.

[6] Knight LA, Pal S, Coleman JC, Bronson F, Haider H, Levine DL, et al. Comparison
of long-term numerical and experimental total knee replacement wear during
simulated gait loading. Journal of Biomechanics 2007;40:1550–8.

[7] Lanovaz JL, Ellis RE. A cadaverically evaluated dynamic FEM model of closed-
chain TKR mechanics. Journal of Biomechanical Engineering 2009;131:051002.

[8] Halloran JP, Petrella AJ, Rullkoetter PJ. Explicit finite element modeling
of total knee replacement mechanics. Journal of Biomechanics 2005;38:
323–31.

[9] Godest AC, Beaugonin M, Haug E, Taylor M, Gregson PJ. Simulation of a knee
joint replacement during a gait cycle using explicit finite element analysis.
Journal of Biomechanics 2002;35:267–75.

10] Lanovaz JL, Ellis RE. Dynamic simulation of a displacement-controlled total
knee replacement wear tester. Proceedings of the Institution of Mechanical
Engineers, Part H: Journal of Engineering in Medicine 2008;222:669–81.

11] D’Lima DD, Steklov N, Fregly BJ, Banks SA, Colwell Jr CW. In vivo contact stresses
during activities of daily living after knee arthroplasty. Journal of Orthopaedic
Research 2008;26:1549–55.

12] Donahue TL, Hull ML, Rashid MM, Jacobs CR. A finite element model of the
human knee joint for the study of tibio-femoral contact. Journal of Biomechan-
ical Engineering 2002;124:273–80.

13] Sarathi Kopparti P, Lewis G. Influence of three variables on the stresses in a
three-dimensional model of a proximal tibia-total knee implant construct. Bio-
medical Materials and Engineering 2007;17:19–28.

14] Rawlinson JJ, Furman BD, Li S, Wright TM, Bartel DL. Retrieval, experimental,
and computational assessment of the performance of total knee replacements.
Journal of Orthopaedic Research 2006;24:1384–94.

15] Knight LA, Pal S, Coleman JC, Bronson F, Haider H, Levine DL, et al. Comparison
of long-term numerical and experimental total knee replacement wear during
simulated gait loading. Journal of Biomechanics 2007;40:1550–8.

16] Bei Y, Fregly BJ. Multibody dynamic simulation of knee contact mechanics.
Medical Engineering & Physics 2004;26:777–89.

17] Fregly BJ, Bei Y, Sylvester ME. Experimental evaluation of an elastic foundation
model to predict contact pressures in knee replacements. Journal of Biome-
chanics 2003;36:1659–68.

18] Fregly BJ, Sawyer WG, Harman MK, Banks SA. Computational wear prediction
of a total knee replacement from in vivo kinematics. Journal of Biomechanics
2005;38:305–14.

19] Zhao D, Sadoka H, Sawyer WG, Banks SA, Fregly BJ. Predicting knee replacement
damage in a simulator machine using a computational model with a consistent
wear factor. Journal of Biomechanical Engineering 2008;130, 011004.

20] Landon RL, Hast MW, Piazza SJ. Robust contact modeling using trimmed NURBS
surfaces for dynamic simulations of articular contact. Computer Methods in
Applied Mechanics and Engineering 2009;198:2339–46.

21] Moran MF, Bhimji S, Racanelli J, Piazza SJ. Computational assessment of
constraint in total knee replacement. Journal of Biomechanics 2008;41:
2013–20.

22] Strickland MA, Taylor M. In-silico wear prediction for knee
replacements—methodology and corroboration. Journal of Biomechanics
2009;42:1469–74.

23] Cox SE, Haftka RT, Baker CA, Grossman B, Mason WH, Watson LT. A comparison
of global optimization methods for the design of a high-speed civil transport.
Journal of Global Optimization 2001;21:415–33.

24] Farhang-Mehr A, Azarm S. Bayesian meta-modelling of engineering design

simulations: a sequential approach with adaptation to irregularities in the
response behaviour. International Journal for Numerical Methods in Engineer-
ing 2005;62:2104–26.

25] Liu B, Haftka RT, Akgun MA. Two-level composite wing structural optimiza-
tion using response surfaces. Structural and Multidisciplinary Optimization
2000;20:87–96.

[

[

& Physics 32 (2010) 584–594 593

26] Queipo NV, Pintos S, Rincon N, Contreras N, Colmenares J. Surrogate
modeling-based optimization for the integration of static and dynamic data
into a reservoir description. Journal of Petroleum Science and Engineering
2002;35:167–81.

27] Roux WJ, Stander N, Haftka RT. Response surface approximations for struc-
tural optimization. International Journal for Numerical Methods in Engineering
1998;42:517–34.

28] Wang GG, Shan S. Review of metamodeling techniques in support of
engineering design optimization. Journal of Mechanical Design 2007;129:
370–80.

29] Xiong Y, Chen W, Apley D, Ding X. A non-stationary covariance-based Krig-
ing method for metamodelling in engineering design. International Journal for
Numerical Methods in Engineering 2007;71:733–56.

30] Bouzid AH, de Technologie Superieure E, Champliaud H. On the use of dual Krig-
ing interpolation for the evaluation of the gasket stress distribution in bolted
joints. In: Proceedings of the ASME pressure vessels and piping conference.
1998.

31] Chang PB, Williams BJ, Santner TJ, Notz WI, Bartel DL. Robust optimization
of total joint replacements incorporating environmental variables. Journal of
Biomechanical Engineering 1999;121:304–10.

32] Lin YC, Farr J, Carter K, Fregly BJ. Response surface optimization for joint contact
model evaluation. Journal of Applied Biomechanics 2006;22:120–30.

33] Lin YC, Haftka RT, Queipo NV, Fregly BJ. Two-dimensional surrogate con-
tact modeling for computationally efficient dynamic simulation of total knee
replacements. Journal of Biomechanical Engineering 2009;131:041010.

34] Halloran JP, Erdemir A, van den Bogert AJ. Adaptive surrogate modeling for
efficient coupling of musculoskeletal control and tissue deformation models.
Journal of Biomechanical Engineering 2009;131:011014.

35] McKay MD, Beckman RJ, Conover WJ. A comparison of three methods for select-
ing values of input variables in the analysis of output from a computer code.
Technometrics 2000;42:55–61.

36] Hammersley JM. Monte Carlo methods for solving multivariable problems.
Annals of the New York Academy of Sciences 1960;86:844–74.

37] Myers RH, Montgomery DC. Response surface methodology: process and prod-
uct in optimization using designed experiments. New York: John Wiley and
Sons Inc.; 1995.

38] Diwekar UM. Introduction to applied optimization. Springer; 2003.
39] Kalagnanam JR, Diwekar UM. An efficient sampling technique for off-line qual-

ity control. Technometrics 1997;39:308–19.
40] Hosder S, Watson LT, Grossman B, Mason WH, Kim H, Haftka RT, et al.

Polynomial response surface approximations for the multidisciplinary design
optimization of a high speed civil transport. Optimization and Engineering
2001;22:431–52.

41] Kaufman MD, Balabanov V, Burgee SL, Giunta AA, Grossman B, Haftka
RT, et al. Variable-complexity response surface approximations for wing
structural weight in HSCT design. Computational Mechanics 1996;18:112–
26.

42] Mack Y, Goel T, Shyy W, Haftka RT. Surrogate model-based optimization frame-
work: a case study in aerospace design. Studies in Computational Intelligence
2007;51:323–42.

43] Krige DG. A statistical approach to some mine valuations and allied problems
at the Witwatersrand. University of Witwatersrand; 1951.

44] Walker PS, Blunn GW, Broome DR, Perry J, Watkins A, Sathasivam S, et al. A knee
simulating machine for performance evaluation of total knee replacements.
Journal of Biomechanics 1997;30:83–9.

45] DesJardins JD, Walker PS, Haider H, Perry J. The use of a force-controlled
dynamic knee simulator to quantify the mechanical performance of total
knee replacement designs during functional activity. Journal of Biomechanics
2000;33:1231–42.

46] An KN, Himenso S, Tsumura H, Kawai T, Chao EYS. Pressure distribution on artic-
ular surfaces: application to joint stability analysis. Journal of Biomechanics
1990;23:1013–20.

47] Blankevoort L, Kuiper JH, Huiskes R, Grootenboer HJ. Articular con-
tact in a three-dimensional model of the knee. Journal of Biomechanics
1991;24:1019–31.

48] Li GA, Sakamoto M, Chao EYS. A comparison of different methods in predict-
ing static pressure distribution in articulating joints. Journal of Biomechanics
1997;30:635–8.

49] Pandy MG, Sasaki K, Kim S. A three-dimensional musculoskeletal model of the
human knee joint. Part 1: Theoretical construct. Computer Methods in Biome-
chanics and Biomedical Engineering 1998;1:87–108.

50] Kane TR, Levinson DA. Dynamics, theory and applications. New York: McGraw-
Hill; 1985.

51] Lophaven SN, Nielsen HB, Sundergaard J. DACE-A Matlab Kriging toolbox; 2002.
52] Archard JF, Hirst W. The wear of metals under unlubricated conditions. In: Pro-

ceedings of the Royal Society of London Series A—Mathematical and physical
sciences. 1956.

53] Fisher J, Dowson D, Hamdzah H, Lee HL. The effect of sliding velocity on
the friction and wear of UHMWPE for use in total artificial joints. Wear
1994;175:219–25.
54] Fishman GS. Monte Carlo: concepts, algorithms and applications. Springer;
1996.

55] Valero-Cuevas FJ, Johanson ME, Towles JD. Towards a realistic biomechanical
model of the thumb: the choice of kinematic description may be more criti-
cal than the solution method or the variability/uncertainty of musculoskeletal
parameters. Journal of Biomechanics 2003;36:1019–30.



5 ering

[

[

94 Y.-C. Lin et al. / Medical Engine
56] Martens H, Naes T. Multivariate calibration. New York: John Wiley and Sons
Inc.; 1984.

57] Wu YT, Millwater HR, Cruse TA. Advanced probabilistic structural-
analysis method for implicit performance functions. AIAA Journal 1990;28:
1663–9.

[

[

& Physics 32 (2010) 584–594
58] Pal S, Haider H, Laz PJ, Knight LA, Rullkoetter PJ. Probabilistic computational
modeling of total knee replacement wear. Wear 2008;264:701–7.

59] Lin YC, Walter JP, Banks SA, Pandy MG, Fregly BJ. Simultaneous prediction of
muscle and contact forces in the knee during gait. Journal of Biomechanics
2010;43:945–52.


	Surrogate articular contact models for computationally efficient multibody dynamic simulations
	Introduction
	Methods
	Surrogate contact model concepts
	Surrogate contact model development
	Step (1): identify sensitive and insensitive directions in the original contact model
	Step (2): avoid sample points with undesirable contact load outputs in sensitive directions by changing the definition of ...
	Step (3): generate sample point input–output pairs by using design of experiments and repeated static analyses
	Step (4): eliminate sample points with undesirable contact load outputs in insensitive directions by using the concept of ...
	Step (5): construct the final surrogate contact model using the desirable subset of the original sample points

	Surrogate contact model evaluation
	Step (1): identify sensitive and insensitive directions in the original contact model
	Step (2): avoid sample points with undesirable contact load outputs in sensitive directions by changing the definition of ...
	Step (3): generate sample point input–output pairs by using design of experiments and repeated static analyses
	Step (4): eliminate sample points with undesirable contact load outputs in insensitive directions by using the concept of ...
	Step (5): construct the final surrogate contact model using the desirable subset of the original sample points


	Results
	Discussion
	Acknowledgments
	References


