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a b s t r a c t

Global optimization algorithms (e.g., simulated annealing, genetic, and particle swarm) have been gain-
ing popularity in biomechanics research, in part due to advances in parallel computing. To date, such
algorithms have only been applied to small- or medium-scale optimization problems (<100 design vari-
ables). This study evaluates the applicability of a parallel particle swarm global optimization algorithm to
large-scale human movement problems. The evaluation was performed using two large-scale (660 design
variables) optimization problems that utilized a dynamic, 27 degree-of-freedom, full-body gait model
to predict new gait motions from a nominal gait motion. Both cost functions minimized a quantity that
reduced the external knee adduction torque. The first one minimized footpath errors corresponding to
an increased toe out angle of 15◦, while the second one minimized the knee adduction torque directly
without changing the footpath. Constraints on allowable changes in trunk orientation, joint angles, joint

torques, centers of pressure, and ground reactions were handled using a penalty method. For both prob-
lems, a single run with a gradient-based nonlinear least squares algorithm found a significantly better
solution than did 10 runs with the global particle swarm algorithm. Due to the penalty terms, the physi-
cally realistic gradient-based solutions were located within a narrow “channel” in design space that was
difficult to enter without gradient information. Researchers should exercise caution when extrapolating
the performance of parallel global optimizers to human movement problems with hundreds of design

pena

t
p
H
d
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variables, especially when

. Introduction

Optimization methods are frequently used to develop human
ovement simulations that reproduce experimentally measured
otions or predict new motions for which experimental data are

ot available [1–19]. These simulations typically utilize complex
usculoskeletal computer models possessing multiple degrees of

reedom (DOFs). Since 10 or more design variables are often used
o parameterize the control of each DOF [1,3,17,20], the resulting

ovement optimization problems can possess hundreds of design

ariables, increasing the likelihood of encountering local minima.
hese large-scale problems can also have a high computational cost
ue to iterative evaluation of the cost function and constraints.
hough ineffective against local minima, gradient-based optimiza-
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ion algorithms have commonly been used to solve large-scale
roblems, primarily because of their rapid convergence properties.
owever, even with these algorithms, the complexities of present-
ay biomechanical models can necessitate thousands of function
valuations to achieve convergence [9,21].

To increase throughput, researchers have developed and eval-
ated several parallel algorithms for biomechanical optimization
roblems. Gradient-based optimization algorithms were the first
o be parallelized for human movement problems [4,5,22], and

ore recently, global optimization algorithms such as genetic [13],
imulated annealing [14], and particle swarm [23–26] have been
arallelized as well. Global algorithms are advantageous since they
ecrease the risk of being trapped in a local minimum, but the price

s significantly higher computational cost compared to a gradient-
ased algorithm. To date, only gradient-based algorithms have

een used for large-scale (>100 design variables) human move-
ent problems (Table 1, top half) such as the three-dimensional

umping and gait problems with over 800 design variables solved
y Anderson and Pandy [4,5]. Since global algorithms have been
sed successfully to solve small- to medium-scale human move-

d.
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ent optimization problems (Table 1, bottom half), it is tempting
o assume that parallel versions of these algorithms will work well
n large-scale human movement problems. However, the reason-
bleness of this assumption has not been evaluated.

The objective of this study was to evaluate the ability of a parallel
article swarm global optimization (PSO) algorithm to solve large-
cale human movement problems. Algorithm performance was
ompared to that of a commonly used gradient-based optimization
lgorithm. Two large-scale human movement problems possess-
ng 660 design variables were developed to perform the evaluation.
oth problems involved predicting novel gait motions using inverse
ynamic optimization of a three-dimensional, 27 DOF, full-body
ait model calibrated to match gait data collected from a patient
ith knee osteoarthritis (OA). The optimizations predicted how gait
odifications would reduce the peak knee adduction torque sub-

ect to several “reality constraints” on the predicted motion. The
esults of the study provide insight into the limitations of global
ptimization algorithms for solving large-scale human movement
roblems.

. Methods

A parallel particle swarm algorithm was chosen as the global
ptimization algorithm for attempting two large-scale human
ovement problems. This algorithm has been tested extensively

nd found to perform well on a number of small- and medium-
cale benchmark problems [26]. For comparison purposes, both
arge-scale human movement problems were also solved using the
evenberg–Marquardt nonlinear least squares (NLS) algorithm [27]
vailable in Matlab (The Mathworks, Natick, MA). This gradient-
ased algorithm was selected since both optimization problems
ere formulated as tracking problems that minimized sums of

quares of errors, the situation for which nonlinear least squares
lgorithms are designed. In general terms, gradient-based algo-
ithms calculate a search direction in multi-dimensional design
pace, step in that direction until a minimum is found, and then iter-
te the entire process until no further improvement can be made.
he following sections describe the parallel particle swarm algo-
ithm and the two large-scale human movement problems used
or evaluation.

.1. Parallel particle swarm optimization algorithm

Particle swarm global optimization is a class of derivative-free,
opulation-based computational methods introduced by Kennedy
nd Eberhart [28]. In the original PSO algorithm, particles (design
oints) are distributed throughout the design space and their posi-
ions and velocities are modified based on knowledge of the best
olution found thus far by each particle in the “swarm.” Attrac-
ion toward the best-found solution occurs stochastically and uses
ynamically adjusted particle velocities. Particle pseudo-velocities
Eq. (1)) and positions (Eq. (2)) are updated as shown below:

i
k+1 = wvi

k + c1r1(pi
k − xi

k) + c2r2(pg
k

− xi
k) (1)

i
k+1 = xi

k + vi
k+1 (2)

here xi
k

represents the current position of particle i in design space
nd subscript k indicates a (unit) pseudo-time increment. The point
i
k

is the best-found position of particle i up to time step k and rep-
i
esents the cognitive contribution to the search velocity v
k+1. The

oint pg
k

is the global best-found position among all particles in
he swarm up to time step k and forms the social contribution to
he velocity vector. Random numbers r1 and r2 are uniformly dis-
ributed in the interval [0, 1]. Parameters c1 and c2 are the cognitive
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nd social scaling parameters, respectively, whose values are gen-
rally chosen such that their sum equals 4 [28]. Choosing c1 = c2 = 2
auses the particles to overshoot the attraction points pi

k
and pg

k
alf the time, thereby maintaining separation in the group while
llowing a greater area to be searched than if the particles did not
vershoot. The value of the variable w, set to 1 at initialization, is
educed dynamically based on the cost function improvement rate,
hereby reducing the search area gradually (see Ref. [25] for further
etails).

Two parallel PSO algorithms have been reported in the liter-
ture. One algorithm is called parallel synchronous PSO (PSPSO)
25], where the master processor updates particle positions and
elocities only after all function evaluations have been completed
y all slave processors. The other algorithm is called parallel asyn-
hronous PSO (PAPSO) [26,29], where the master processor updates
article positions and velocities continuously as function evalu-
tions are completed by the slave processors. Since PAPSO tends
o find a slightly lower cost function value than does PSPSO for
he same number of function evaluations [26], a parallel PAPSO
lgorithm was used in the present study.

Ten PAPSO runs were performed for both large-scale movement
ptimization problems. Each run was performed on a homoge-
eous Linux cluster of 20 identical PCs, utilized 20 particles along
ith other standard algorithm parameter values (see Ref. [24] for
etails), and iterated for 1 million function evaluations to ensure
onvergence. One of the particles was always assigned to match
he nominal experimental gait motion, while the other 19 parti-
les were given random initial guesses within the initial bounds of
he design space. During each optimization, particles were allowed
o “stray” beyond the initial bounds. Similar to previous optimiza-
ion algorithm evaluations studies [13,24], no tuning of algorithm
arameter values was performed for any of the optimizations. Exe-
ution time for each PAPSO optimization was approximately 2.3 h.

.2. Large-scale human movement problems

Previously reported experimental gait and isolated joint motion
ata collected from a single patient with knee OA (male, age 37
ears, height 170 cm, mass 69 kg, alignment 5◦ varus) were used as
he initial guess for the two benchmark human movement opti-

ization problems [8]. Institutional review board approval and
nformed consent were obtained. The gait and isolated joint motion
ata were used to calibrate the joint and inertial parameter values

n a dynamic, full-body, three-dimensional (3D) gait model. The
odel possessed 27 DOFs composed of gimbal (3 DOFs), univer-

al (2 DOFs), and pin (1 DOF) joints, where each DOF was chosen
s a generalized coordinate in the model (Fig. 1). The position and
rientation of the pelvis in the laboratory coordinate system were
efined by three translational and three rotational DOFs, resulting

n six pelvis residual loads (three forces and torques) during inverse
ynamic analyses. For the lower body, each hip was modeled as a
imbal joint, each knee as a pin joint, and each ankle as two non-
ntersecting and non-orthogonal pin joints. For the upper body, the
ack was modeled as a gimbal joint, each shoulder as a universal

oint, and each elbow as a pin joint. Ground reaction forces and
orques applied to the feet were treated as unknowns to be deter-

ined during periods when the foot was known to be in contact
ith the ground [30]. Details on the experimental data collection

nd model calibration process can be found in Ref. [8].
The calibrated model and nominal gait data were used in
wo large-scale human movement optimization problems. Both
roblems involved predicting gait changes that reduce the left
nee adduction torque subject to reality constraints that produced
ealistic-looking gait motions. The first problem predicted how
ncreasing the toe out angle on each side by 15◦ would alter the

[
d
t
m
t

ig. 1. Schematic of the dynamic, three-dimensional gait model possessing 14 seg-
ents and 27 degrees of freedom. Segments are joined by a combination of gimbal,

niversal, and pin joints.

eft knee adduction torque (henceforth called the “toe out gait opti-
ization”) [31], while the second problem predicted changes in gait
otion that would decrease the left knee adduction torque with-

ut altering the toe out angle (henceforth called the “modified gait
ptimization”). The reality constraints minimized changes in trunk
otations, pelvis residual loads, and footpaths (with increased toe
ut angle where necessary) away from the nominal gait data.

The two gait prediction problems were formulated as inverse
ynamic optimizations. Each optimization performed repeated

nverse dynamics analyses, where each analysis used the patient-
pecific gait model to calculate joint torque and pelvis residual load
utputs given the current guess for the joint angle and ground
eaction inputs. The joint angle and ground reaction curves mea-
ured experimentally were parameterized as a function of time
sing a combination of polynomial and Fourier terms [32], thereby
llowing analytic calculation of joint velocities and accelerations.
o match the experimental gait data accurately, a cubic polynomial
ith eight Fourier harmonics (i.e., 20 coefficients) was selected,
roducing root-mean-square (RMS) errors between experimental
nd fitted curves on the order of 0.3 mm, 0.2◦, 4 N, and 0.7 Nm
7]. The design variables for the two optimization problems were

efined as the coefficients of the parameterized curves. By changing
he joint angle and ground reaction design variables, the opti-

izations were able to predict novel gait motions that satisfied
he dynamics equations [6–8,30]. For both problems, the following
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Table 2
Mean final cost function value and percent reduction in both knee adduction torque peaks for 10 runs of the parallel asynchronous particle swarm algorithm (PSO) and one
run of the nonlinear least squares algorithm (NLS). The PSO algorithm did not converge to an improved solution for the gait modification problem.

Problem Optimizer Final cost function value Adduction torque reduction (%)

First peak Second peak

Toe-out gait
PSO 1.71 × 105 3.5 9.3
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shift in the CoP (Fig. 5). The predicted kinematic changes were
decreased pelvic obliquity, slightly increased hip, knee, and ankle
flexion, and increased hip internal rotation, resulting in a medial
shift of the left knee center.
NLS 6.67 × 10

odified gait
PSO 7.55 × 10
NLS 2.36 × 10

otion and ground reaction curves were allowed to vary: all pelvis
ranslations, all back, pelvis, hip, knee, and ankle rotations, and all
round reaction forces and torques (33 curves in all for a total of 660
esign variables). Shoulder and elbow rotations were prescribed to
atch the experimental data. Ground reaction forces and torques
ere set to zero for time frames when the foot was known to be off

he floor [30].
Since the PAPSO and NLS algorithms can only solve uncon-

trained optimization problems, the constraints for both movement
rediction problems were handled using a penalty method. The
orm of the augmented cost function is indicated in Eq. (3) below:

min

nframes∑
f =1

⎧⎨
⎩T2

LAddf +
2∑

s=1

⎛
⎝

3∑
j=1

(�T2
Hip)

fsj
+ (�T2

Knee)fs

+
2∑

j=1

(�T2
Ankle)

fsj
+

2∑
j=1

(�CoP2)fsj

⎞
⎠

+
2∑

s=1

⎛
⎝

3∑
j=1

(�q2
Hip)

fsj
+ (�q2

Knee)fs +
2∑

j=1

(�q2
Ankle)

fsj

⎞
⎠

+
6∑

j=1

(�q2
Pelvis)fj

+ wTrunk

3∑
j=1

(�q2
Trunk)

fj
+ wPelvis

6∑
j=1

(�T2
Pelvis)fj

+ wFootPath

2∑
s=1

⎛
⎝

6∑
j=1

(�q2
Foot)fsj

⎞
⎠

⎫⎬
⎭ (3)

n this equation, nframes is the number of time frames used in the
roblem (=101), f is a specific time frame, j is a translational or
otational joint axis number, and s is a side. The weights wTrunk,

Pelvis, and wFootPath (=10) for the reality constraints were ini-
ialized to 1 and increased by factors of 10 until RMS errors in
runk orientation, pelvis residual loads, and footpath were less
han 5 mm, deg, N, or Nm. TLAdd is the left knee adduction torque,
hich was removed for the toe out gait optimization and mini-
ized for the modified gait optimization. Other constraints were

hanges in the following quantities away from their nominal exper-
mental trajectories: hip flexion/extension, abduction/adduction,
nd inter/external rotation torque and angle (�THip, �qHip), knee
exion/extension torque and angle (�TKnee, �qKnee), ankle flex-

on/extension and inversion/eversion torque and angle (�TAnkle,
qAnkle), anterior/posterior and medial/lateral center of pressure

osition (�CoP), pelvis translations and rotations (�qPelvis), trunk
otations (�qTrunk), pelvis residual forces and torques (�TPelvis), and

oot translations and rotations (�qFoot). Though foot translations
nd rotations and trunk rotations with respect to the laboratory
oordinate system were not generalized coordinates in the model,
hese quantities were calculated from the current values of the
eneralized coordinates.

F
S
a
b
a

2.9 32.2
– –
32.4 29.4

. Results

In contrast to the NLS algorithm, the PAPSO algorithm converged
o an improved solution only for the toe out gait optimization prob-
em. For both problems, the best final cost function value found by
0 PAPSO runs was larger than the final cost function value found
y one NLS run (Table 2). With the exception of footpath rotation
rror for the PAPSO toe out gait optimization, all optimizations suc-
essfully satisfied the three reality constraints (trunk orientations,
elvis residual loads, and footpath translation/rotation,), maintain-

ng RMS errors to within 2 mm, 2◦, 4 N, and 4 Nm.
For the toe out gait optimization, the PAPSO algorithm predicted

ittle change in the first knee adduction torque peak and a 9.3%
eduction in the second peak, while the NLS algorithm predicted
ittle change in the first peak and a 32.2% reduction in the sec-
nd one (Fig. 2). The PAPSO algorithm achieved only a 10◦ increase
n toe out angle, whereas the NLS algorithm achieved the full 15◦

ncrease. The corresponding lateral shift in the CoP was larger for
he NLS algorithm than for the PAPSO algorithm (Fig. 3). To achieve
n increased foot progression angle, both algorithms predicted
ncreased hip abduction, greatly increased hip external rotation,
lightly decreased ankle flexion, and increased ankle eversion dur-
ng stance phase.

For the modified gait optimization, PAPSO was unable to
roduce any adduction torque reductions, while NLS predicted
eductions of 32.4% and 29.4% in the first and second peak, respec-
ively (Fig. 4). These reductions were accompanied by a small lateral
ig. 2. Left knee adduction torque predictions for the toe out gait optimizations.
olid line is nominal experimental curve, dashed line is prediction generated by
single run with the nonlinear least squares algorithm (NLS), and dotted line is

est prediction generated by 10 runs with the parallel asynchronous particle swarm
lgorithm (PSO).
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Fig. 3. Left foot center of pressure predictions for the toe out gait optimizations.
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Fig. 5. Left foot center of pressure predictions for the modified gait optimizations.
Solid line is nominal experimental trajectory on the ground, dashed line is prediction
g
d
t
u

o
d
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t
s
fi

olid line is nominal experimental trajectory on the ground, dashed line is prediction
enerated by a single run with the nonlinear least squares algorithm (NLS), and
otted line is best prediction generated by 10 runs with the parallel asynchronous
article swarm algorithm (PSO).

. Discussion

This study evaluated whether a global particle swarm opti-
ization algorithm could solve two large-scale human movement

roblems possessing 660 design variables. Both problems uti-
ized a three-dimensional, 27 DOF, full-body gait model whose
oint and inertial parameters were calibrated to gait data col-

ected from a single patient with knee OA. The cost function
or both problems sought to reduce the peak knee adduction
orque either by increasing the foot progression angle (i.e., the
oe out gait optimization) or by minimizing the adduction torque
irectly without any changes in footpath (i.e., the modified gait

ig. 4. Left knee adduction torque predictions for the modified gait optimizations.
olid line is nominal experimental curve, dashed line is prediction generated by a
ingle run with the nonlinear least squares algorithm (NLS), and dotted line (coin-
ident with solid line) is best prediction generated by 10 runs with the parallel
synchronous particle swarm algorithm (PSO). The PSO algorithm was unable to
ake any improvement for this problem.
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he parallel asynchronous particle swarm algorithm (PSO). The PSO algorithm was
nable to make any improvement for this problem.

ptimization). Penalty terms were included to ensure that the pre-
icted gait motions were physically realistic. The PAPSO algorithm
chieved an improved solution only for the toe out gait optimiza-
ion problem, whereas a gradient-based NLS algorithm achieved
ignificant and realistic improvements for both problems. These
ndings suggest that global optimization algorithms proven to
ork well for small- to medium-scale problems may not work well

or large-scale human movement problems. Researchers should
ot assume that an optimization solution is the global minimum
imply because a global algorithm was used to generate it, and
hey should exercise caution when extrapolating the performance
f global optimizers to problems involving hundreds of design
ariables.

There are at least three reasons why the PAPSO algorithm per-
ormed worse than did the NLS algorithm on these two benchmark
roblems. First, no tuning was performed of PAPSO algorithm
arameters. It is possible that our PAPSO algorithm could have
erformed better had time-consuming algorithm parameter tun-

ng been performed. Such tuning was not performed in the present
tudy since few researchers take the time to do it (i.e., researchers
ant to find algorithms that work well “out of the box”), and

ince studies that evaluate optimization algorithm performance
ormally do not tune the algorithm parameters to the specific prob-

ems being investigated [13,24]. Second, the shape of the design
pace made it difficult to locate the global minimum without the
se of gradient information. Though the design space was smooth
or both sample problems, the minimum was located in a small
eep hole in design space (Fig. 6), making it extremely difficult for
particle to migrate into this hole using only stochastic updates.
hird, only a single set of penalty weights was used for both opti-
izations problems rather than ramping up the weights slowly

ver a sequence of optimization runs [33]. A sequence of optimiza-
ions with increasing penalty weights was not performed because
f the excessive computation time required by this approach. Fur-
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ig. 6. Visualization of the design space for the modified gait optimization problem
hen two design variables are varied within their initial bounds and all other design

ariables are held constant.

hermore, the selected weights posed no problem for the NLS
lgorithm, suggesting that the PSO algorithm may have conver-
ence difficulties for problems involving penalty terms. Differences
n optimization algorithm performance cannot be attributed to
ifferences in problem formulation, since both algorithms used
xactly the same formulations. In fact, the PSO algorithm possesses
he advantage of insensitivity to design variable scaling, which
radient-based algorithms with finite-difference gradients do not
ossess [24].

Since the global optimization results reported in this study were
ased on a single optimization algorithm, it is not clear that similar
oor performance would be observed for other global algorithms.
owever, this will likely be the case based on previous benchmark
roblems solved with a synchronous version of our PSO algorithm
nd several other global algorithms [24]. At a minimum, researchers
ho desire to use a global optimization algorithm on a large-

cale human movement problem should compare their results with
hose from a gradient-based algorithm as a check.

The best result for both optimizations was consistent with
ecent experimental observations. The toe out gait optimization
redicted that increasing the foot progression angle by 15◦ would
educe the second but not the first peak of knee adduction torque
urve. When Guo et al. [34] increased the experimental toe out
ngle by 15◦, they found little change in the first adduction torque
eak and roughly a 40% reduction in the second one. When the sub-

ect in our study increased his toe out angle by approximately 15◦,
he experimental reduction in the second peak was approximately
0% with little change in the first one [8]. By comparison, our NLS
oe out gait optimization predicted a 32.2% reduction in the second
eak and only a slight change in the first one, with both peaks being
ithin ±1 S.D. of the mean values measured from our subject over

hree trials. The modified gait optimization predicted that inter-
ally rotating the hips so as to medialize the knees would reduce
oth peaks of the knee adduction torque curve. When Barrios and
avis [35] recently trained a healthy subject to walk with the hips

nternally rotated and the knees medialized, they observed a 28%
eduction in the first knee adduction torque peak. Our NLS modified
ait optimization predicted a comparable reduction of 32.4%.

In summary, this study evaluated the ability of a global particle
warm optimization algorithm to solve large-scale human move-
ent problems. Though the PSO algorithm used in our study has
erformed well on small- to medium-scale benchmark and biome-
hanical optimization problems [26], it did not perform well on
he two large-scale human movement problems investigated in
his study, with a gradient-based nonlinear least squares algo-

[

[
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ithm performing better on both problems. Significant algorithm
arameter tuning or use of a global–local hybrid algorithm may be
ecessary for PSO and other global optimizers to solve large-scale
uman movement problems. Based on the results of this study, the
SO algorithm is not recommended for solving large-scale human
ovement optimization problems possessing constraints or com-

eting terms in the cost function. Researchers should exercise
aution when evaluating the results of large-scale human move-
ent optimization problems solved using global algorithms.
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