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Muscle Synergies Modify
Optimization Estimates of Joint
Stiffness During Walking
Because of its simplicity, static optimization (SO) is frequently used to resolve the muscle
redundancy problem (i.e., more muscles than degrees-of-freedom (DOF) in the human
musculoskeletal system). However, SO minimizes antagonistic co-activation and likely
joint stiffness as well, which may not be physiologically realistic since the body modu-
lates joint stiffness during movements such as walking. Knowledge of joint stiffness is lim-
ited due to the difficulty of measuring it experimentally, leading researchers to estimate it
using computational models. This study explores how imposing a synergy structure on
the muscle activations estimated by optimization (termed “synergy optimization,” or
SynO) affects calculated lower body joint stiffnesses during walking. By limiting the
achievable muscle activations and coupling all time frames together, a synergy structure
provides a potential mechanism for reducing indeterminacy and improving physiological
co-activation but at the cost of a larger optimization problem. To compare joint stiff-
nesses produced by SynO (2–6 synergies) and SO, we used both approaches to estimate
lower body muscle activations and forces for sample experimental overground walking
data obtained from the first knee grand challenge competition. Both optimizations used a
custom Hill-type muscle model that permitted analytic calculation of individual muscle
contributions to the stiffness of spanned joints. Both approaches reproduced inverse
dynamic joint moments well over the entire gait cycle, though SynO with only two syner-
gies exhibited the largest errors. Maximum and mean joint stiffnesses for hip and knee
flexion in particular decreased as the number of synergies increased from 2 to 6, with SO
producing the lowest joint stiffness values. Our results suggest that SynO increases joint
stiffness by increasing muscle co-activation, and furthermore, that walking with a
reduced number of synergies may result in increased joint stiffness and perhaps stability.
[DOI: 10.1115/1.4044310]
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Introduction

Reliable estimation of muscle forces during human movement
could facilitate the development of improved interventions for dis-
orders such as osteoarthritis, stroke, cerebral palsy, and Parkin-
son’s disease [1]. Since muscle forces cannot be measured
noninvasively using standard experimental methods, numerous
research studies have used computational models to estimate these
quantities. However, the human musculoskeletal system is stati-
cally indeterminate, meaning more muscles are present than the
number of degrees-of-freedom (DOF) in the skeleton (i.e., the
muscle redundancy problem). For this reason, rigid body dynam-
ics alone cannot be used to solve for unique muscle activations
and forces, necessitating the development of more complex com-
putational approaches.

Due to its simplicity, static optimization (SO) is the most com-
monly used computational approach for estimating unique muscle
activations and forces during human movement. The two most
common competing approaches are dynamic optimization and
electromyogram (EMG)-driven modeling. Whereas dynamic opti-
mization utilizes forward skeletal dynamics, solves for muscle
activations over all time frames simultaneously, and can predict
new motions [2–4], SO utilizes inverse skeletal dynamics, solves
for muscle activations at each time frame independently, and
requires measured motion and external forces as inputs. Though
dynamic optimization possesses potential advantages over SO

[4–6], for slow to moderate speed activities such as gait, estimated
muscle activations and forces from the two approaches are practi-
cally equivalent [7,8]. EMG-driven modeling approaches have
also been used to estimate muscle forces during human movement
[9–13]. These approaches require experimental EMG data as
inputs and calibrate muscle-tendon model parameters. However,
due to uncertainties in measured EMG signals (e.g., cross talk
[14,15], movement artifact [16], processing parameters [17], and
normalization [18]), the accuracy of the estimated muscle forces
remains unknown [19]. In contrast to EMG-driven modeling, SO
does not require any EMG data as inputs and typically is not used
to perform calibration of muscle model parameters.

The simplifications provided by SO come at the cost of less
physiologically realistic solutions. The most commonly used SO
cost function is minimization of the sum of squares of muscle acti-
vations [3,19–21], which is the default SO cost function in OPENSIM

[22]. The resulting minimum effort solution produces minimum
muscle co-activation between agonistic and antagonist muscles
[23,24] and consequently minimum joint stiffness (i.e., resistance
of a joint to move in response to an applied moment [25]). Since
recent research has suggested that the central nervous system
modulates joint stiffness during movement [26,27], and specifi-
cally during gait to control stability or absorb impacts [26], a min-
imum co-activation solution may be a poor representation of an
individual’s actual motor control strategy.

Recently, researchers have begun exploring muscle synergy
concepts as a way to limit the achievable muscle activations pre-
dicted by optimization methods [28–39], thereby reducing solu-
tion indeterminacy and increasing physiological co-activation.
Analysis of experimental EMG data provides a muscle synergy
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control structure [40–43], where muscle synergies can be viewed
as a low-dimensional set of neural control building blocks that are
used to construct a higher dimensional set of measured EMG sig-
nals. Each muscle synergy consists of a time-varying neural com-
mand and a time-invariant vector of weights that defines how the
neural command contributes to each EMG signal. Typically
between 2 and 6, muscle synergies are needed to account for over
90% of the variability in all measured EMG signals during human
movement [32,35,44,45]. Though several studies have imposed a
synergy structure on their muscle excitations or activations esti-
mated by optimization methods [30,31,35–39], no study to date
has investigated how imposing a synergy structure on estimated
muscle controls affects calculated joint stiffnesses.

This study investigates how incorporating an explicit muscle
synergy control structure into an optimization problem formula-
tion affects calculated lower body joint stiffnesses, as well as net
joint moment matching, muscle co-activation, and muscle force,
during walking. To perform the investigation, similar to Ref. [36],
we modified the common SO problem formulation that minimizes
the sum of squares of muscle activations for each time frame inde-
pendently into a formulation that minimizes the sum of squares of
muscle activations plus the sum of squares of joint moment
matching errors over all time frames simultaneously. Whereas SO
uses muscle activations as design variables, our modified formula-
tion (terms “synergy optimization,” or SynO) uses synergy activa-
tions and their associated synergy vectors as design variables,
where the time-invariant synergy vectors couple the time frames
together. To estimate the resulting joint stiffnesses, we also devel-
oped an analytical joint stiffness formulation based on a rigid-
tendon Hill-type muscle model. Joint stiffness along with joint
moment matching, muscle activation, and muscle force results
found using 2–6 synergies are compared with SO results to dem-
onstrate the effects of a synergy control structure.

Methods

Musculoskeletal Model Creation. The experimental walking
data used in this study were taken from the First Grand Challenge
Competition to Predict in vivo Knee Loads [46]. The subject
(coded JW, male, age 83, mass 68 kg, height 1.66 m) possessed a
right total knee replacement and neutral leg alignment. One nor-
mal gait cycle (jw_ngait_2), defined from heel strike to subse-
quent heel strike of the right leg, was selected for analysis.
Surface marker trajectory and ground reaction force data were
taken from this trial.

A previously developed pelvis and right leg OPENSIM model of
the subject [39] was used for analyses performed in OPENSIM [22].
Therefore, the left leg was not analyzed in this study. The model
possessed three hip DOFs, one knee DOF, and two ankle DOFs
and incorporated geometry constructed from the subject’s CT
scan data and CAD models of the subject’s knee implant compo-
nents. The origins, insertions, and wrapping surfaces of 44
muscle-tendon actuators were taken from a scaled generic OPENSIM

model [47] and transferred to the subject-specific implant-bone
geometry. OPENSIM inverse kinematics, inverse dynamics, and
muscle analyses were performed to calculate joint kinematics,
joint moments, and muscle-tendon lengths, velocities, and
moment arms for the selected gait cycle, normalized to 101 time
frames.

In preparation for estimating muscle forces via optimization
and joint stiffnesses via analytical calculations, we developed sur-
rogate models of the OPENSIM musculoskeletal geometry. The sur-
rogate models were based on a cubic polynomial fit of muscle-
tendon length as a function of involved generalized coordinates
[13,38,48]. For each muscle, a linear least squares solution was
performed to find a single set of polynomial coefficients that fitted
muscle-tendon length and associated moment arms simultane-
ously as a function of spanned joint angles. For example, for a
uniarticular muscle i crossing a single joint j possessing

generalized coordinate hj, muscle-tendon length ‘MT
i and moment

arm rij were fitted simultaneously assuming [13,49]

‘MT
i ¼ b0 þ b1hj þ b2h

2
j þ b3h

3
j

rij ¼ �
@‘MT

i

@hj
¼ �b1 � 2b2hj � 3b3h

2
j

(1)

Muscle-tendon velocity was then defined analytically using the
same polynomial coefficients

vMT
i ¼ d‘MT

i

dt
¼ b1

_hj þ 2b2hj
_hj þ 3b3h

2
j
_hj (2)

This approach was extended to muscles spanning multiple joints.

Optimization Formulations. Two optimization formulations
were implemented in MATLAB [50] using a custom Hill-type mus-
cle model with rigid tendon, which is a reasonable assumption for
walking [7,8]. Muscle-tendon model parameter values were taken
from Ref. [39]. Tendon force FT

i produced by each Hill-type mus-
cle i was formulated as [51]

FT
i ¼ FM

oi f‘ ~‘
M

i

� �
fv ~vM

i

� �
ai þ fp ~‘

M

i

� �h i
cos ai (3)

where FM
oi is the peak isometric force, f‘ ~‘

M

i

� �
is the normalized

active force–length relationship, fvð~vM
i Þ is the normalized active

force–velocity relationship, ai is the activation, fp
~‘

M

i

� �
is the nor-

malized passive force–length relationship, and ai is the pennation
angle. Normalized force-length and force-velocity curves were
defined by smooth analytical functions to facilitate formation of
analytical derivatives for joint stiffness calculations. For both
optimization formulations, no reserve actuators or activation
dynamics were used, and errors in inverse dynamic joint moment
matching were quantified using root-mean-square (RMS) and R2

metrics.
The first optimization formulation was SO. Since muscle acti-

vations were independent between time frames, the optimization
problem was solved one time frame at a time. The static optimiza-
tion problem used muscle activations as design variables and was
formulated as in Ref. [20]

min
ai

X44

i¼1

a2
i

subject to

Mj ¼
X44

i¼1

rijF
T
i ðj ¼ 1;…; 6Þ

0 � ai � 1 ði ¼ 1;…; 44Þ

(4)

where ai is the activation of muscle i, Mj is the inverse dynamics
moment for joint j, rij is the moment arm of muscle i about joint j,
and FT

i is the tendon force for muscle i, all at the current time
frame. For computational efficiency, since the moment matching
constraint in Eq. (4) is a linear function of the design variables ai,
we implemented the SO formulation as a quadratic programming
problem and solved it using MATLAB’s quadprog optimization
algorithm.

The second optimization formulation was our synergy-based
formulation (SynO). In this formulation, a synergy structure was
imposed on the muscle activations by design. Since synergy vec-
tor weights were time-invariant across time frames, this optimiza-
tion problem was solved over all time frames simultaneously.
Construction of synergy-based muscle activations was inspired by
non-negative matrix factorization [52–56]
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aiðtÞ ¼
Xn

p¼1

wipspðtÞ ði ¼ 1;…; 44Þ (5)

where aiðtÞ is the activation of muscle i as a function of time, wip

is the time-invariant synergy vector weight for muscle i and syn-
ergy p (wip � 0), and spðtÞ is the time-varying synergy activation
for synergy p as a function of time (spðtÞ � 0). To make the syn-
ergy solution unique, we required the sum of all weights in each
synergy vector to equal 1

X44

i¼1

wip ¼ 1 ðp ¼ 1;…; nÞ (6)

where each synergy vector specifies intermuscle activation cou-
pling. Furthermore, to reduce the number of design variables
required to construct all muscle activations over all time frames,
we parameterized each time-varying synergy activation spðtÞ
using a B-spline function constructed from 21 adjustable nodal
points spanning the gait cycle

spðtÞ ¼
X21

l¼1

f ðblp; tÞ (7)

where blp is nodal point l for synergy p. The complete optimiza-
tion problem was formulated as

min
wip ;blp

X101

k¼1

X44

i¼1

a2
ik þ

X6

j¼1

Mjk �
X44

i¼1

rijkFik

 !2
0
@

1
A

subject to

X44

i¼1

wip ¼ 1 ðp ¼ 1;…; nÞ

wip � 0; blp � 0

where

aik ¼
Xn

p¼1

wipspk

spk ¼ f ðblp; kÞ ðl ¼ 1;…; 21Þ

(8)

where k indicates the time frame being evaluated, wip (i¼ 1, …,
44) and blp (l¼ 1, …, 21) are the design variables, and n indicates
the selected number of synergies to use for constructing muscle
activations. In this formulation, joint moment tracking was
included in the cost function rather than the constraints since a
limited number of activation synergies will never be able to match
the inverse dynamic joint moments perfectly. We implemented
our SynO formulation as a nonlinear programming problem with
linear equality constraints and solved it using MATLAB’s fmincon
optimization algorithm.

Compared to the SO formulation, SynO theoretically (though
not practically) eliminates the muscle force indeterminacy prob-
lem, as shown by considering the number of equations and num-
ber of unknowns in both formulations. For SO, each time frame
possesses six equations from inverse dynamic joint moment
matching and 44 unknown muscle activations, creating a highly
underdetermined problem. In contrast, for our SynO formulation,
the complete gait cycle possesses six joint moments� 101 time
frames¼ 606 equations from inverse dynamic joint moment
matching and n synergies� (44 synergy vector weights/synergy
þ 21 B-spline nodal points/synergy)¼ n� 65 unknowns for

activation construction. The number of unknowns for 2–6 syner-
gies is therefore

Unknowns ¼ n� 65

¼ 130 ðn ¼ 2Þ
¼ 195 ðn ¼ 3Þ
¼ 260 ðn ¼ 4Þ
¼ 325 ðn ¼ 5Þ
¼ 390 ðn ¼ 6Þ

(9)

Thus, even for six synergies, the muscle force solution is theoreti-
cally overdetermined with 606 equations and 390 unknowns.
However, in practice, since neighboring time frames are not
completely independent from one another, the solutions remain
underdetermined, necessitating the inclusion of an activation min-
imization term (also called a regularization term [57]) in the cost
function.

Joint Stiffness Calculation. For all muscle force solutions, the
total stiffness of each lower body joint at each time frame was cal-
culated using analytical relationships derived from our rigid-
tendon Hill-type muscle model and surrogate musculoskeletal
geometry. In brief, for any joint j possessing generalized coordi-
nate hj and joint moment Mj, joint stiffness kj due to the active
and passive force-length properties of all muscles spanning the
joint was defined as

kj ¼ �
@Mj

@hj
where Mj ¼

X44

i¼1

rijF
T
i (10)

Carrying out the partial derivative and employing the chain rule
for differentiation leads to

kj ¼ �
Xn

i¼1

@rij

@hj
FT

i þ rij
@FT

i

@‘MT
i

@‘MT
i

@hj

 !
(11)

Recalling the relationship between rij and ‘MT
i (review Eq. (1)),

Eq. (11) simplifies further to

kj ¼ �
Xn

i¼1

@rij

@hj
FT

i � r2
ij

@FT
i

@‘MT
i

 !
(12)

The two remaining partial derivatives in Eq. (12) were formed
analytically, the first from Eq. (1), and the second from Eq. (3).
Analytic calculation of the second partial derivative would not
have been possible if a compliant tendon model had been used.
Thus, for slow activities such as walking where a rigid tendon
model is justifiable [7,8], Eq. (12) makes it possible to calculate
joint stiffness analytically given muscle activations and joint
kinematics.

Results

Joint Moment Matching. All six lower extremity joint
moments were matched well by both SynO and SO (Table 1,
Fig. 1), despite the omission of reserve actuators from the optimi-
zation problem formulations. SO matched inverse dynamic joint
moments to within the specified constraint tolerance of 1� 10�6.
SynO matched inverse dynamic joint moments with increasing
fidelity, as indicated by decreasing RMS errors and increasing R2

values (see Table 1), as the number of synergies was increased.
The worst SynO joint moment matching (especially for the hip
rotation moment) was produced for two synergies. By four syner-
gies, all RMS errors were less than 1 N�m and all R2 values were
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0.95 or higher. By six synergies, the SynO joint moment solutions
became visually indistinguishable from those produced by SO.

Muscle Activation Estimation. In contrast to the joint moment
results, the muscle activation results were visibly different
between the SynO and SO solutions (Fig. 2). For some muscles,
the activations estimated by SynO were insensitive to the number
of synergies (e.g., glmin2), while for other muscles, the estimated
activations were highly sensitive and decreased as the number of
synergies increased (e.g., gaslat) (Fig. 2). Sensitive muscles
tended to be those that spanned the hip and/or knee. For two syn-
ergies, the activations of several muscles (e.g., bfsh, gaslat,
glmin1) went well above 1, as no upper bound on muscle activa-
tions was used in the SynO formulation. In general, as the number
of synergies approached six, muscle activations estimated by
SynO approached those estimated by SO (Fig. 2).

Joint Stiffness Estimation. Also, in contrast to the joint
moment results, the joint stiffness results were visibly different
between the SynO and SO solutions (Figs. 3 and 4). During stance
phase, joint stiffness for hip flexion and knee flexion, but not for
the other joints, was affected by the selected number of synergies,

with stiffness decreasing as the number of synergies was
increased. By six synergies, the stiffness of each joint was low
and approximately constant, becoming essentially the same as that
produced by SO. In contrast, during swing phase, joint stiffness
was low and approximately constant regardless of how the optimi-
zation was performed.

Discussion

This study explored how a modified static optimization method
that imposed a synergy structure on estimated muscle activations
affected calculated lower body joint stiffnesses during walking.
Although SynO finds synergy activations over all time frames
simultaneously, it is still a static optimization approach because it
uses algebraic rather than differential equations [58]. To compare
SynO to SO, we used walking data taken by the First Grand Chal-
lenge Competition to Predict in vivo Knee Loads [46]. We found
that while joint moment matching was relatively insensitive to the
selected number of synergies, joint stiffnesses associated with hip
and knee flexion were highly sensitive, with peak values decreas-
ing as the number of synergies was increased. Reasonable joint
moment matching could be achieved with a low number of

Fig. 1 Net joint moments matching results over the gait cycle for inverse dynamics (ID; black)
and synergy optimization with 2 (blue), 4 (red), and 6 (yellow) synergies. SO moments were
identical to those of ID to the numerical tolerance of 1 3 1026. Plot titles refer to positive direc-
tion. The gait cycle is defined from heel strike to subsequent heel strike of the right leg.
Dashed gray lines indicate right toe-off.

Table 1 RMS errors (first row, N�m) and R2 values (second row) for inverse dynamic joint moment matching using the SynO
approach

Number of synergies Hip flexion Hip adduction Hip rotation Knee flexion Ankle flexion Ankle inversion

2 5.4 4.2 3.4 2.6 2.5 1.1
0.96 0.96 0.39 0.98 0.99 0.94

3 1.5 2.2 1.6 1.5 2.0 1.0
1.00 0.99 0.86 0.99 1.00 0.95

4 0.4 0.5 0.9 0.5 0.6 0.7
1.00 1.00 0.95 1.00 1.00 0.98

5 0.2 0.3 0.3 0.2 0.3 0.7
1.00 1.00 0.99 1.00 1.00 0.98

6 0.2 0.1 0.1 0.2 0.2 0.3
1.00 1.00 1.00 1.00 1.00 1.00
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Fig. 2 Muscle activation results for SO (black) and synergy optimization with 2 (blue), 4 (red), and 6 (yellow) synergies.
Dashed gray lines indicate right toe-off. Muscle labels are adductor brevis (addbrev), adductor longus (addlong), adductor
magnus proximal (addmagProx), adductor magnus middle (addmagMid), adductor magnus distal (addmagDist), adductor
magnus ischial (addmagIsch), biceps femoris long head (bflh), biceps femoris short head (bfsh), extensor digitorum longus
(edl), extensor hallucis longus (ehl), flexor digitorum longus (fdl), flexor hallucis longus (fhl), lateral gastrocnemius (gaslat),
medial gastrocnemius (gasmed), gemellus (gem), gluteus maximus (glmax1, glmax2, glmax3), gluteus medius (glmed1,
glmed2, glmed3), gluteus minimus (glmin1, glmin2, glmin3), gracilis (grac), iliacus, pectoralis (pect), peroneus brevis (per-
brev), peroneus longus (perlong), peroneus tertius (pertert), piriformis (piri), psoas, quadratus femoris (quadfem), rectus fem-
oris (recfem), sartorius (sart), semimembranosus (semimem), semitendinosus (semiten), soleus, tensor fasciae latae (tfl),
tibialis anterior (tibant), tibialis posterior (tibpost), vastus intermedius (vasint), vastus lateralis (vaslat), and vastus medialis
(vasmed).

Fig. 3 Joint stiffness results over the gait cycle for SO (black) and synergy optimization with
2 (blue), 4 (red), and 6 (yellow) synergies. The gait cycle is defined from heel strike to subse-
quent heel strike of the right leg. Dashed gray lines indicate right toe-off.
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synergies by increasing the activations in only a subset of
muscles, which in turn necessitated increased antagonistic muscle
activations and ultimately increased joint stiffnesses. This finding
might have important implications for stroke neurorehabilitation,
where a stroke often results in a decreased number of paretic leg
synergies [59], which could potentially increase hip and knee
stiffness.

The synergy optimization method used in this study is similar
to the method presented in Ref. [36], which also optimized syn-
ergy vector weights and synergy activations simultaneously. How-
ever, our SynO approach was different in three ways. First, we
used a different muscle model. Whereas Gopalakrishnan et al.
[36] used a Hill-type muscle model with a compliant tendon, our
study used a Hill-type muscle model with a rigid tendon that
allowed us to analytically calculate individual muscle contribu-
tions to the stiffness of spanned joints. Second, we used a different
approach for calculating muscle forces. Whereas the compliant
tendon model used in Ref. [36] required numerical integration of
first-order ordinary differential equations to calculate muscle force
time histories, our rigid tendon model allowed muscle forces to be
calculated algebraically at each time point. Third, we used a dif-
ferent approach for solving the optimization problem across all
time frames simultaneously. Whereas Gopalakrishnan et al. [36]
used direct collocation optimal control with a separate design
variable defining each synergy control at each time instant, we
defined each synergy control using 21 B-spline nodes, which sig-
nificantly reduced the number of design variables and made the
solution closer to determinate. The net result of these three differ-
ences was lower computation time for SynO over the direct collo-
cation approach used in Ref. [36]. For six synergies, SynO
required 6–8 min of CPU time to converge from random initial
guesses, and only 2–4 min for four synergies. In Ref. [36], a solu-
tion using four synergies required 10–20 min of CPU time, which
is not surprising given the added computational cost of repeated
numerical integration. Our simulations were performed on a com-
puter with an Intel Xeon Gold 6144 processor, 3.50 GHz CPU,
and 128 GB of RAM. Computer specifications were not reported
in Ref. [36].

Imposing a muscle synergy structure on estimated muscle acti-
vations leads to several advantages compared to SO. One

advantage is that muscle activation discontinuities between time
frames may be largely eliminated due to a lower number of time-
varying controls that each affects the activation of multiple
muscles. Another advantage is that the level of indeterminacy in
the muscle force solution is reduced due to the reduced number of
design variables provided by a synergy structure. A third advant-
age is that it may be easier to identify subject-specific neural con-
trol characteristics due to the greater uniqueness provided by a
synergy structure, especially if the number of synergies is defined
based on analysis of the subject’s experimental EMG data. A
fourth advantage is the ability to incorporate joint stiffness consid-
erations into new optimization methods for estimating muscle
forces. However, the advantages of SynO over SO come at the
cost of a more computationally expensive and complex optimiza-
tion process, since use of time-invariant synergy vector weights as
design variables requires that all time frames be solved
simultaneously.

This study also presented an analytical joint stiffness formula
for estimating the total stiffness due to active and passive force-
length properties of all muscles spanning a joint. An analytical
derivation of joint stiffness was possible due to the rigid tendon
assumption in the musculotendon model and surrogate model fit-
ting of muscle-tendon lengths and moment arms. This analytical
stiffness formula may be useful for many different human-
centered applications, such as in biomechanics, rehabilitation, and
human–robot interaction. The central nervous system regulates
joint stiffnesses as well as joint moments during human movement
[26,27], for example, for controlling stability or absorbing impacts
during gait [26], or for stabilizing movements in unstable environ-
ments [60] or unpredictable situations [61]. Therefore, analytical
joint stiffness calculations could facilitate the development of
novel optimization cost functions and/or constraints that produce
more reliable muscle force estimates. In rehabilitation, since
excessive joint stiffness can impair movement ability [62], analyt-
ical joint stiffness calculations could be used to facilitate identifi-
cation of alternate neural control strategies that maximize
recovery of lost function. Since impedance control is frequently
used in robotics, analytical joint stiffness calculations could also
be useful for the design of more robust controllers in
human–robot interaction applications [63].

Fig. 4 Mean joint stiffness over stance phase for SO and synergy optimization with 2–6 syn-
ergies. The gait cycle is defined from heel strike to subsequent heel strike of the right leg.
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An interesting finding was that SO produced the lowest muscle
activation and joint stiffness results compared to all of the SynO
results. This finding is likely due to the fact that SO minimizes
antagonistic muscle activations, as previously reported [23,24]. In
contrast, our SynO approach constrains muscles to act within syn-
ergy groups, using B-splines to ensure the continuity of each
time-varying synergy activation. The imposed synergy structure
leads to higher levels of antagonistic activation, potentially resolv-
ing a shortcoming in static optimization. However, the new
dilemma becomes how to choose the correct number of synergies
for any particular subject.

Among the six joints in our OPENSIM model, joint stiffness esti-
mates for hip adduction and ankle dorsiflexion were consistently
negative at the midpoint of the gait cycle (Fig. 3), which would
suggest a destabilizing effect on the motion [64]. There are two
possible interpretations for this finding. The first is that the finding
is correct and has some rational explanation. These negative stiff-
ness regions occur at the maximum value of the anterior ground
reaction force. At the same time point, the hip begins a rapid shift
toward maximum abduction and the ankle toward maximum plan-
tarflexion at toe-off (dashed gray line). Negative stiffness might
facilitate further movement of both joints in the direction of the
motion, rather than resistance in that direction [25]. In this case,
such an effect would either place the foot back on the ground or
accelerate the push-off and unloading process that initiates swing
phase while maintaining forward progression. Thus, this small
region of negative stiffness may help ensure that the transition
from stance to swing phase is either completed successfully or not
completed safely. The second possible interpretation is that the
finding is incorrect and reflects small errors in the model structure,
model parameter values, and/or experimental inputs. Either way,
these negative dips are small compared to the maximum hip flex-
ion and knee flexion stiffness estimated during stance phase for
low numbers of synergies. Whether these small regions of nega-
tive stiffness are correct, common, or biomechanically helpful
will require further research.

While it is difficult to explain the possible biomechanical sig-
nificance of small negative joint stiffnesses, it is not difficult to
calculate which muscles contribute to them, and why. An advant-
age of our analytical joint stiffness formula is that it makes such
calculations possible. Our joint stiffness formula (Eq. (12)) con-
tains two terms: �ð@rij=@hjÞFT

i and r2
ijð@FT

i =@‘
MT
i Þ. For negative

stiffness to occur, the sum of these two terms must be negative.
Since FT

i is always non-negative, the first term will be negative
when @rij=@hj is positive. Thus, a negative muscle contribution to
joint stiffness can occur when an increase in generalized coordinate
value produces an increase in moment arm value. Since r2

ij is
always positive, the second term will be negative when @FT

i =@‘
MT
i

is negative. Thus, a negative muscle contribution to joint stiffness
can also occur when an increase in muscle-tendon length produces
a decrease in tendon force, which is possible when a muscle’s nor-
malized fiber length is greater than 1.

Following this approach, we were able to identify which
muscles were the primary contributors to negative joint stiffness,
and why the negative values occurred. For negative hip adduction
stiffness, iliacus, sartorius, rectus femoris, and tensor fascia latae
were the primary contributors, while for negative ankle flexion
stiffness, gastrocnemius medialis, gastrocnemius lateralis, and sol-
eus were the key muscles. For all of these muscles, negative stiff-
ness was caused primarily by the first term in our stiffness
formula through a combination of a positive @rij=@hj value and a
large FT

i value.
Depending on the environment and cognitive situation, humans

modulate joint stiffness during gait to control stability or absorb
impacts [26]. One might walk in a relaxed manner with minimum
joint stiffness, or one might walk in a rigid manner with higher joint
stiffness. Antagonistic muscles can be recruited to increase joint
stiffness while keeping the net muscle moment the same. This
possibility implies that in addition to matching joint moments,
which is a requirement of dynamic equilibrium, the central

nervous system adjusts muscle forces to modulate joint stiff-
ness [65], which could occur through changes in reflex behavior
[66] or activation-dependent alterations in muscle properties
[67,68].

Some researchers have suggested that individuals with neuro-
logical disorders such as stroke or Parkinson’s disease walk with
increased joint stiffness, potentially to maintain greater stability
and reject walking disturbances [69,70]. Individuals with these
disorders have also been shown to use a lower number of muscle
synergies than do healthy individuals [59,71]. Our study suggests
that these two observations may be related, with increased joint
stiffness being required to achieve specified inverse dynamic joint
moments using a low number of synergies. Further exploration of
this issue should be performed by analyzing walking data col-
lected from individuals with neurological disorders.

Although activation minimization has historically been used to
solve the muscle redundancy problem, this cost function mini-
mizes antagonistic co-activation and therefore joint stiffness.
Given that the body modulates joint stiffness during movement
[26], quantification of joint stiffness using experimental measure-
ments and neuromusculoskeletal models may eventually lead to
more realistic estimates of antagonistic muscle co-activation.

This study possessed a number of limitations that should be
considered when evaluating our results. First, subject-specific neu-
ral control factors were not modeled. Rather, our muscle activa-
tion and force estimates were generated solely using optimization
methods without assistance from EMG data. Validation of the
estimated activations against EMG measurements would be a
future study. Second, activation dynamics was omitted. Activation
dynamics limits how fast muscle activations can vary, which
could potentially alter our results. Third, only a single gait cycle
from a single subject was analyzed. Future plans include analyz-
ing gait data from a larger number of subjects and trials. Fourth,
the subject analyzed was not neurologically impaired in any
obvious way. Studying impaired subjects (e.g., due to stroke or
spinal cord injury) using the number of synergies identified in
their EMG data would be beneficial for evaluating our SynO
approach as well as joint stiffness differences between subjects.
Fifth, no joint stiffness measurements exist for this subject that
could be used for validation purposes. Though joint stiffness is
difficult to measure experimentally under dynamic functional con-
ditions [72], such stiffness measurements during walking could
significantly improve our ability to estimate muscle forces reli-
ably. Sixth, joint stiffness depends on musculoskeletal geometry
and musculotendon model parameter values, and only a single set
of parameter values was used in this study, as obtained from Ref.
[39]. A thorough sensitivity analysis to investigate how variations
in relevant model parameter values affect total joint stiffness
would be worthwhile.

In conclusion, this study demonstrated how imposition of a syn-
ergy structure on the muscle activations found via optimization
affects the stiffness of lower body joints during walking. We
found that inverse dynamic joint moment matching improved lit-
tle as the number of synergies is increased from 2 to 6. We also
found that hip and knee joint stiffness during stance phase
decreased substantially as the number of synergies was increased
from 2 to 6, with static optimization producing the lowest stiffness
of all joints. Although it had been previously reported that static
optimization minimizes antagonistic cocontraction, no study to
our knowledge had investigated the connection between SO and
joint stiffness. In terms of clinical relevance, this study suggests
that individuals with neurological disorders may walk with a stiff
gait pattern due to a reduced number of muscle synergies. This
hypothesis could be tested using gait data collected from subjects
with stroke or Parkinson’s disease.
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