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Can Measured Synergy
Excitations Accurately
Construct Unmeasured
Muscle Excitations?
Accurate prediction of muscle and joint contact forces during human movement could
improve treatment planning for disorders such as osteoarthritis, stroke, Parkinson’s dis-
ease, and cerebral palsy. Recent studies suggest that muscle synergies, a low-
dimensional representation of a large set of muscle electromyographic (EMG) signals
(henceforth called “muscle excitations”), may reduce the redundancy of muscle excita-
tion solutions predicted by optimization methods. This study explores the feasibility of
using muscle synergy information extracted from eight muscle EMG signals (henceforth
called “included” muscle excitations) to accurately construct muscle excitations from up
to 16 additional EMG signals (henceforth called “excluded” muscle excitations). Using
treadmill walking data collected at multiple speeds from two subjects (one healthy, one
poststroke), we performed muscle synergy analysis on all possible subsets of eight
included muscle excitations and evaluated how well the calculated time-varying synergy
excitations could construct the remaining excluded muscle excitations (henceforth called
“synergy extrapolation”). We found that some, but not all, eight-muscle subsets yielded
synergy excitations that achieved >90% extrapolation variance accounted for (VAF).
Using the top 10% of subsets, we developed muscle selection heuristics to identify included
muscle combinations whose synergy excitations achieved high extrapolation accuracy. For
3, 4, and 5 synergies, these heuristics yielded extrapolation VAF values approximately 5%
lower than corresponding reconstruction VAF values for each associated eight-muscle sub-
set. These results suggest that synergy excitations obtained from experimentally measured
muscle excitations can accurately construct unmeasured muscle excitations, which could
help limit muscle excitations predicted by muscle force optimizations.
[DOI: 10.1115/1.4038199]
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Introduction

The ability to determine muscle and joint contact forces reliably
during walking could be useful for developing improved treatments
for disorders such as osteoarthritis, stroke, Parkinson’s disease, and
cerebral palsy [1]. However, experimental approaches do not cur-
rently exist for measuring muscle and joint contact forces in vivo
under normal conditions. Similarly, computational approaches for
predicting these quantities are limited by the redundancy inherent
in movement coordination (i.e., many more muscles actuating the
skeleton than degrees-of-freedom in the skeleton) [2].

To address the indeterminacy issue, computational studies gen-
erally use either optimization or electromyographic (EMG) driven
methods to estimate muscle and joint contact forces in musculo-
skeletal models. Optimization methods include static optimization,
which is an inverse dynamic approach that utilizes prescribed kine-
matics and net joint moments to find muscle excitations, and
dynamic optimization, which is a forward dynamic approach that
solves for kinematics, net joint moments, and muscle excitations
simultaneously [1,3–5]. While these methods can provide unique
muscle and joint contact force solutions, they depend on subjec-
tive cost functions that make assumptions about what the body is
maximizing or minimizing. Furthermore, predicted muscle excita-
tions frequently do not agree well with EMG measurements.
In contrast, EMG-driven methods use processed experimental

EMG data to directly control muscle excitations in a musculoskel-
etal model [6–9]. Similar to static optimization, these methods
require prescribed kinematics and net joint moments, but unlike
optimization methods in general, they avoid the need for an
assumed cost function. However, variations in the quality of EMG
data, especially for muscles not accessible by surface electrodes,
limit these methods [10,11]. Consequently, even EMG-driven
methods often use optimization methods to calculate unmeasured
muscle excitations, which may be inconsistent with the actual
muscle excitations [12].

Muscle synergy analysis has been proposed as a way to reduce the
indeterminacy of muscle excitations predicted by optimization meth-
ods [13,14]. Muscle synergy analysis is a computational approach
that uses non-negative matrix factorization (NMF) to decompose a
large number of experimentally measured EMG signals into a
smaller number of independent time-varying “synergy excitations,”
along with weights that describe how each synergy excitation con-
tributes to each measured muscle excitation [15–17]. Typically, only
three to five synergy excitations are needed to account for over 90%
of the variability in up to 32 muscle excitations measured experimen-
tally during walking [18–20]. To date, muscle synergy analysis has
been used primarily in descriptive studies to analyze experimental
EMG data [18,19]. For example, muscle synergy analysis has been
applied to EMG data collected from individuals poststroke or with
Parkinson’s disease during walking revealing that, compared to
healthy individuals, a reduced number of synergy excitations is often
required to reach 90% variance accounted for (VAF) [20,21]. Recent
studies have also incorporated muscle synergy concepts into muscle

Manuscript received July 31, 2015; final manuscript received October 5, 2017;
published online November 15, 2017. Assoc. Editor: Silvia Blemker.

Journal of Biomechanical Engineering JANUARY 2018, Vol. 140 / 011011-1Copyright VC 2018 by ASME

D
ow

nloaded from
 https://asm

edigitalcollection.asm
e.org/biom

echanical/article-pdf/5178894/bio_140_01_011011.pdf by R
ice U

niversity user on 19 Septem
ber 2019



force optimizations [22–28]. One study improved prediction of knee
contact forces by replacing a high-dimensional set of 44 independent
muscle excitations with a lower-dimensional set of 5 synergy excita-
tions [27]. The synergy excitations were extracted from 13 experi-
mental EMG signals and were used to construct 44 interdependent
muscle excitations. However, no evidence exists that synergy infor-
mation obtained from a small number of experimentally measured
EMG signals can accurately construct muscle excitations associated
with unmeasured EMG signals.

This study explored the feasibility of using synergy excitations
extracted from eight surface EMG signals collected during walk-
ing to accurately construct muscle excitations derived from sur-
face and fine-wire EMG signals collected simultaneously from up
to 16 other muscles. EMG data collected from one healthy subject
(24 channels from one leg) and one subject poststroke (16 chan-
nels from each leg) during treadmill walking were subdivided into
multiple subsets of eight commonly collected surface EMG signals
and all remaining surface and fine-wire EMG signals. Two novel
measures were investigated to quantify the ability of synergy exci-
tations extracted from each eight-muscle subset to construct the
remaining muscle excitations not included in the subset, a process
we call synergy extrapolation. The most appropriate measure was
used to quantify how the choice of muscles in each eight-muscle
subset affected construction accuracy for the remaining muscle
excitations. Thus, the two main questions we addressed were: (1) Is
synergy extrapolation using surface EMG data theoretically possi-
ble for walking, and if so, (2) Which muscles accessible by surface
EMG provide the best information for synergy extrapolation?

Methods

Experimental Data Collection and Reduction. Experimental
EMG data were collected from one healthy subject and one subject
poststroke while walking at different speeds on an instrumented
treadmill. Institutional review board approval and subject written
informed consent were obtained prior to participation. Eleven tread-
mill walking trials ranging from 0.4 to 1.4 m/s were collected from
the healthy subject, and seven trials ranging from 0.2 to 0.8 m/s
were collected from the stroke subject. From each trial, ten consec-
utive gait cycles were chosen for analysis. A total of 24 EMG sig-
nals (17 surface, seven fine-wire) were collected from lower
extremity muscles of the healthy subject’s dominant leg, while a
total of 16 EMG signals (12 surface, four fine-wire) were collected
from each leg of the stroke subject (Table 1). For the healthy sub-
ject, two recordings of rectus femoris activity were taken to capture
fully its biarticular action. Whereas the SENIAM project (Surface
ElectroMyoGraphy for the Non-Invasive Assessment of Muscles)
guidelines [29] state that the rectus femoris electrode should be
placed 50% of the way between the superior aspect of the patella
and the anterior superior iliac spine, we chose electrode placements
located more proximally and distally compared to this location to
capture both hip flexion and knee extension components, respec-
tively. EMG signals were band-pass filtered (zero-lag fourth-order
Butterworth) from 10 to 400 Hz for surface EMG and 20 to 400 Hz
for fine-wire EMG to account for additional soft tissue motion arti-
facts. All EMG data were then demeaned, full-wave rectified, and
low-pass filtered (zero-lag fourth-order Butterworth) at seven/(cycle
time) Hz (6 Hz for a typical cycle time of approximately 1.2 s) to
account for speed-related changes in motion artifacts [30]. The
resulting processed EMG signals defined experimental muscle exci-
tation profiles. Muscle excitations in EMG-driven studies are typi-
cally normalized to the excitation level recorded during a
maximum voluntary contraction [6,8,31,32]. Alternatively, since
maximum voluntary contraction trials were not performed for either
subject in this study, we normalized each muscle excitation by its
maximum value observed across all walking trials [9].

Synergy Extrapolation Approach. In preparation for perform-
ing thousands of muscle synergy analyses, we grouped muscle

excitations from both subjects into multiple pairs of included and
excluded subsets. Muscle excitations placed in an included subset
were used in an associated synergy analysis while those placed in
an excluded subset were omitted from that synergy analysis. Each
included subset was composed of muscle excitations from eight
muscles with surface EMG data while the corresponding excluded
subset was composed of the remaining 16 (dominant leg of
healthy subject) or eight (each leg of stroke subject) muscle exci-
tations from muscles with either surface or fine-wire EMG data.
The total number of included subsets for each subject (24,310 for
the healthy subject and 495 for each leg of the stroke subject) was
determined by the number of possible combinations of eight
muscles with surface EMG data. Eight muscle excitations were
used in each included subset since this number is consistent with
the number of experimental EMG signals commonly used in syn-
ergy analysis studies [20,25,33]. In practice, included muscle
excitations would be those that can be measured easily using sur-
face electrodes, while excluded muscle excitations would be those
that cannot be measured easily due to limitations in number of
available EMG channels or the need for fine-wire electrodes.

We performed muscle synergy analysis on each included mus-
cle excitation subset using NMF [15–17]. Each synergy analysis
produced a low-dimensional set of time-varying signals (hence-
forth called synergy excitations) and a corresponding set of
weighting vectors (henceforth called “synergy vectors”) that
specified how each synergy excitation contributed to each
included muscle excitation [15,16]. The NMF optimization algo-
rithm minimizes the following objective function f ðW;HiÞ:

f W;Hið Þ ¼ 1

2
kWHi � Aik2

F (1)

where W is an n time points� p synergies matrix containing syn-
ergy excitations (presumably representing both included and
excluded muscle excitations) in columns, Hi is a p synergies�mi

muscles matrix containing the synergy vectors associated with the
included muscle excitations in rows, Ai is an n time points�mi

muscles matrix containing the included (subscript i) muscle

Table 1 Experimental surface and fine-wire EMG measure-
ments recorded for this study. EMG measurements from two
different locations of the rectus femoris were included since
both contained unique signal characteristics.

Healthy Stroke

Adductor Magnus Adductor Longus
Gluteus Maximus Gluteus Maximus
Gluteus Medius Gluteus Medius
aSartorius aIliopsoas
Semimembranosus Semimembranosus
Semitendinosus Biceps Femoris Long Head
Biceps Femoris Long Head Rectus Femoris
Rectus Femoris (�2) Vastus Medialis
Tensor Fasciae Latae Vastus Lateralis
Gracilis Medial Gastrocnemius
aBiceps Femoris Short Head Tibialis Anterior
Vastus Medialis aTibialis Posterior
Vastus Lateralis Peroneus Longus
aVastus Intermedius Soleus
Medial Gastrocnemius aExtensor Digitorum Longus
Lateral Gastrocnemius aFlexor Digitorum Longus
Tibialis Anterior
aTibialis Posterior
Peroneus Longus
Soleus
aExtensor Hallucis Longus
aFlexor Hallucis Longus
aExtensor Digitorum Longus

Surface EMG.
aFine-wire EMG.
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excitations in columns, and kkF represents the Frobenius norm
[34]. Synergy vectors were allowed to vary between gait cycles,
and therefore synergy analysis using Eq. (1) was performed on
each gait cycle separately. Prior to synergy analysis, we normalized
each muscle excitation profile to have unit variance to allow the
variations in each muscle to be considered with equal importance
in the NMF solution approach [15]. Three to five synergies were
extracted from each included muscle excitation subset, which is
typical of other studies involving synergy analysis [18–20]. The
resulting synergy excitations were normalized by a scaling factor to
have a maximum value of one, consistent with the maximum value
of muscle excitations used in muscle force optimizations. Corre-
sponding synergy vectors were multiplied by the same scaling fac-
tor to keep reconstructed included muscle excitations unaltered.

Several algorithms are available to factor matrix Ai into W and
Hi. In our study, we used a combination of the default algorithms
included with the MATLAB nnmf function (The MathWorks Inc.,
Natick, MA). The multiplicative update algorithm was used to
generate initial guesses for W and Hi, and these initial guesses
were then used in the alternating least squares algorithm, which is
faster and allows for more evaluations of the objective function.
To avoid finding local minima, we performed each synergy analy-
sis ten times using ten different initial guesses for the multiplica-
tive update algorithm, taking the solution with lowest final cost
function value as our best estimate of the global minimum. For a
detailed explanation of both algorithms, refer to Berry et al. [34].

We evaluated how accurately the synergy excitations W
obtained from each included muscle excitation subset Ai were
able to construct each corresponding excluded muscle excitation
subset Ae—a process we call synergy extrapolation. Synergy
extrapolation assumes that the synergy excitations obtained from
the included muscle excitations apply equally well to the excluded
muscle excitations, though the additional synergy vector weights
He for the excluded muscle excitations remain unknown. How to
find these unknown weights in practice remains a topic of ongoing
research. For the present study, our goal was to determine whether
synergy extrapolation could work in theory by taking advantage
of our knowledge of the excluded muscle excitations in each
included–excluded subset pair. Specifically, given W as found
using Eq. (1) and Ae from the same subset pair, we calculated He

using linear least-squares regression, as indicated by the following
matrix equations:

WTWHe ¼ WTAe

He ¼ ðWTWÞ�1WTAe

(2)

where W is the previously found n time points� p synergies
matrix containing synergy excitations in columns, He is a p syn-
ergies�me muscles matrix containing the synergy vectors associ-
ated with the excluded muscle excitations, and Ae is an n time
points�me muscles matrix containing the excluded (subscript e)
muscle excitations in columns. In our study, we solved Eq. (2)
using the MATLAB backslash operator, which did not force the
recovered synergy vector weights to be positive. Once He was cal-
culated, we reconstructed the corresponding excluded muscle
excitations using matrix multiplication

~Ae ¼ WHe (3)

where ~Ae is the synergy-based approximation of Ae. We per-
formed this synergy extrapolation approach for every
included–excluded muscle subset pair, thereby providing a com-
prehensive set of extrapolation solutions. Variance accounted for,
a measure of goodness of fit that accounts for magnitude and
shape, was utilized to evaluate all extrapolation solutions for
excluded muscle excitations [15]. Each available data set (healthy
subject leg, stroke subject nonparetic, and paretic leg) was ana-
lyzed separately. An overview of our entire computational
approach is provided in Fig. 1.

Synergy Extrapolation Evaluation. Variance account for val-
ues calculated for reconstructed excluded muscle excitations
through synergy extrapolation were averaged across excluded
muscles and gait cycles to create a single extrapolation VAF for
each excluded muscle subset. We sorted included muscle subsets
based on the extrapolation VAF of their corresponding excluded
muscle subset. The 10% of included muscle subsets that resulted
in excluded muscle subsets with the highest extrapolation VAF
were identified as the top 10% of subsets. Extrapolation ability
was measured in two different ways: (1) the number of subsets
that exceeded 90% extrapolation VAF, and (2) the mean extrapo-
lation VAF for the top 10% of subsets at each walking speed. We
used these two measures to define “acceptable” muscle subsets,
which were then compared to determine which included muscle
subsets produced the most accurate extrapolation results.

Using the measure that best described extrapolation ability, we
developed four different heuristics for selecting included muscle
subsets likely to extrapolate with the highest accuracy possible.
Since these heuristics were based on the results of the preceding
synergy analysis, we describe the four heuristics in detail within
the Results section and describe here only the rationale for their
development. To define the number of synergies for developing
heuristics, we determined how many synergies were needed such
that extrapolation VAF exceeded 90% on average for all three
data sets. For each data set, we calculated the frequency with
which each included muscle appeared in an acceptable subset
across all trials. Next, we developed heuristics based on overall
muscle frequency and importance of having muscles in different
functional groups. Included muscle subsets selected from these
heuristics were evaluated based on their ability to construct accu-
rately excluded muscle excitations using the presented synergy
extrapolation method, noting that under normal conditions, the
excluded muscle excitations would not be known. In addition, the
individual reconstruction VAF values for included muscle excita-
tions chosen by each heuristic were calculated and averaged
together for three to five extracted synergy excitations. Recon-
struction VAF results for included muscles were compared to
extrapolation VAF results for excluded muscles to determine the
number of synergy excitations required to achieve a desired
extrapolation accuracy.

Results

Overall, synergy excitations extracted from subsets of eight
included muscle excitations derived from surface EMG data were
able to construct the remaining excluded muscle excitations
derived from surface and fine-wire EMG data with high accuracy,
as demonstrated by both measures of extrapolation ability. The
number of eight-muscle subsets able to achieve 90% extrapolation
VAF increased as the number of synergies was increased (Table 2).
Acceptable combinations were found for most walking speeds
when using four and five synergy excitations, while almost no
acceptable combinations were found when using three synergy
excitations. While variations were also observed across walking
speeds, these variations were found to be sensitive to small reduc-
tions in the VAF cutoff value (Fig. 2). For example, for the paretic
leg of the stroke subject analyzed using five synergies, three walk-
ing speeds had virtually no combinations that achieved the 90%
VAF cutoff value. However, when the VAF cutoff was reduced to
85%, more than 200 muscle combinations met the VAF require-
ment for all walking speeds. Furthermore, reducing the VAF cut-
off to 80% allowed over 90% of muscle combinations to meet the
cutoff for every trial in all three experimental data sets. Variations
across speeds were also observed in the mean extrapolation VAF
for the top 10% of subsets, although not as acutely (Fig. 3). While
this measure is contrary to cutoffs traditionally used in synergy
analysis, it eliminates the subjectivity of a 90% VAF value and
may be a better indicator of extrapolation ability. Consequently,
we chose the mean extrapolation VAF for top 10% of subsets as
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the most appropriate measure for identifying heuristics that pro-
duce high extrapolation VAF.

Muscle selection heuristics developed using muscle frequency
in the top 10% of subsets across all walking trials (Table 3) led to
reliable identification of eight-muscle subsets with high extrapola-
tion accuracy (Table 4). Muscle combinations selected by all four
heuristics achieved average extrapolation VAF of 86.9%, 89.7%,
and 91.9% for three, four, and five synergy excitations, respec-
tively, with only small variations observed between heuristics
(Table 5). These combinations achieved average reconstruction
VAF of 91.8%, 95.7%, and 97.8% for three, four, and five synergy
excitations, respectively. Thus, average reconstruction VAF val-
ues were greater than extrapolation VAF values by an average of
5.5%. The combinations of eight muscles selected by heuristics
represented all primary lower extremity muscle functions during
walking.

Discussion

This study addressed two primary questions: (1) Is synergy
extrapolation—using synergy excitations obtained from one set of
muscle excitations to construct another set of muscle
excitations—theoretically possible for walking, and (2) if so,
which muscles accessible by surface EMG provide the most infor-
mation for synergy extrapolation? Our results clearly demonstrate
that numerous subsets of eight muscle excitations derived from
surface EMG data (i.e., the included muscles) during walking are
able to accurately construct between eight and 16 additional mus-
cle excitations derived from surface and fine-wire EMG data col-
lected simultaneously (i.e., the excluded muscles), indicating that
synergy extrapolation is theoretically possible for walking. How-
ever, many included muscle subsets did not yield high extrapola-
tion VAF values, indicating that the choice of included muscles

Fig. 1 Overview of synergy extrapolation approach. All possible combinations of eight sur-
face EMG measurements were identified and labeled as the included muscle subsets for each
full data set (healthy, stroke nonparetic leg, stroke paretic leg). Synergy analysis was per-
formed on each included subset to determine a set of three to five time-varying synergy excita-
tions that reconstructed the eight surface EMG signals. The subset of remaining muscle
excitations not included in the synergy analysis was labeled as the excluded muscle subset
and was fitted with the extracted synergy excitations through linear least-squares regression.
The constructed excluded muscle excitations were compared to the experimental excluded
muscle excitations using VAF calculations. VAF values were averaged across muscles and
gait cycles to create a single extrapolation VAF value for each included–excluded muscle sub-
set pair. This synergy extrapolation approach was repeated for each walking speed of all three
data sets.
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for calculating the necessary synergy excitations is important. We
also developed heuristics for selecting combinations of eight com-
monly collected surface EMG signals that provided high extrapo-
lation accuracy. Based on these results, synergy extrapolation may
be useful for limiting predicted muscle excitations in muscle force
optimizations, since the problem of finding a time-varying muscle
excitation for each muscle can be reduced to the problem of find-
ing only 3, 4, or 5 time-varying synergy excitations with associ-
ated synergy vector weights. It may also be useful for limiting
predicted muscle excitations in EMG-driven models with missing
EMG signals, since the problem of finding a time-varying muscle
excitation for each unmeasured muscle is reduced to the problem
of finding only 3, 4, or 5 synergy vector weights. Furthermore,
because our results were consistent between our two subjects, our
findings may be equally applicable to healthy individuals as well
as individuals with neurological impairments.

While our study demonstrates that synergy extrapolation is the-
oretically possible, it does not provide practical information
regarding how to find the unknown synergy vector weights. In
real-life conditions, some muscles will have available surface
(and possibly fine-wire) EMG data while many others will not. To
evaluate whether or not synergy extrapolation could work on a
theoretical basis, we divided our large number of available EMG
signals into included and excluded categories, where the included
muscles represented those from which experimental EMG could
be collected—thus synergy analysis could be performed, while
the excluded muscles represented those from which experimental

EMG data would be more difficult to collect. We took advantage
of our knowledge of excluded muscle excitations to determine
how well they could be constructed using synergy excitations
obtained from the included muscles. Of course, finding the
unknown synergy vector weights for the excluded muscles this
way would not be possible in practice. Determining how to find
these unknown weights remains a topic of ongoing research.

At a minimum, by showing that synergy extrapolation can work
for walking, we have demonstrated that it is reasonable to reduce
the indeterminacy in muscle force optimization problems by using
a small number of synergy excitations to construct all muscle exci-
tations [27]. For example, consider a static optimization problem
for walking where a 5 degrees-of-freedom leg model is controlled
by 50 muscle-tendon actuators and the gait cycle is divided into
100 time points. Theoretically, we would have 5� 100¼ 500
inverse dynamic moments to be matched by 50� 100¼ 5000
unknown muscle excitation values (ignoring activation dynamics),
which is underdetermined by a factor of 10. If we now model all
muscle excitations using 5 synergies, we would have 5� 100
¼ 500 unknown synergy excitation values and 5� 50¼ 250
unknown synergy vector weights for a total of 750 unknowns. For
this situation, the problem would be underdetermined by only a fac-
tor of 1.5, making the design space much smaller and the solution
much closer to unique. However, because the unknown synergy
vector weights apply to all time frames, the optimization problem
must now be solved over all time frames simultaneously, increasing
the computational cost of the solution process significantly (e.g.,

Table 2 Number of included muscle combinations that were able to achieve 90% extrapolation VAF for three to five synergy excita-
tions. Analyses using four and five synergy excitations produced favorable extrapolation results for most walking speeds, while
almost no acceptable combinations were found when using three synergy excitations.

Healthy Stroke, nonparetic Stroke, paretic

Trial (m/s) Combinationsa Trial (m/s) Combinationsa Trial (m/s) Combinationsa

3
S

y
n
er

g
ie

s

0.4 0 0.2 0 0.2 0
0.5 97 0.3 0 0.3 0
0.6 15 0.4 0 0.4 0
0.7 219 0.5 0 0.5 0
0.8 0 0.6 0 0.6 1
0.9 0 0.7 0 0.7 0
1 0 0.8 0 0.8 0

1.1 0 — — — —
1.2 0 — — — —
1.3 0 — — — —
1.4 0 — — — —

4
S

y
n
er

g
ie

s

0.4 8959 0.2 0 0.2 0
0.5 15,635 0.3 0 0.3 155
0.6 10,310 0.4 56 0.4 0
0.7 12,423 0.5 93 0.5 12
0.8 2646 0.6 6 0.6 25
0.9 777 0.7 158 0.7 0
1 23 0.8 67 0.8 0

1.1 0 — — — —
1.2 0 — — — —
1.3 11 — — — —
1.4 0 — — — —

5
S

y
n
er

g
ie

s

0.4 19,950 0.2 97 0.2 2
0.5 20,898 0.3 167 0.3 258
0.6 20,342 0.4 222 0.4 0
0.7 20,095 0.5 276 0.5 148
0.8 16,918 0.6 214 0.6 177
0.9 12,116 0.7 284 0.7 81
1 6695 0.8 279 0.8 0

1.1 4532 — — — —
1.2 841 — — — —
1.3 7876 — — — —
1.4 3804 — — — —

a24,310 and 495 possible combinations for healthy leg and stroke legs, respectively.
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Fig. 2 Percentage of included muscle combinations that achieved a specified extrapolation
VAF value (80%, 85%, or 90%) for the healthy subject (top), the nonparetic leg of the stroke
subject (middle), and the paretic leg of the stroke subject (bottom) across all walking speeds.
Extrapolation VAF results were generated using five synergy excitations. Extrapolation ability
varied across walking speeds, but no consistent trend appeared across the three data sets.
The percentage of acceptable muscle combinations changed significantly with relatively small
changes in VAF cutoff value. For these results in absolute numbers instead of percentage val-
ues, refer to Table 2.

Fig. 3 Mean extrapolation VAF for the top 10% of combinations averaged across walking trials (black circles) for the healthy
subject (left), the nonparetic leg of the stroke subject (middle), and the paretic leg of the stroke subject (right) using three to five
synergies. Error bars representing plus or minus one standard deviation demonstrate the variability across walking trials for
each data set. Reference lines represent VAF cutoff values for typical synergy analyses (90% and 95%). Using five synergies, all
three data sets achieved on average a mean extrapolation VAF of 90% or greater across all walking speeds. The paretic leg data
set exhibited a reduced extrapolation ability with more variability across walking speeds compared to the nonparetic leg and the
healthy data sets.
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Refs. [27,35]). If the unknown synergy excitations could be
obtained from experimentally measured muscle excitations, they
could serve as subject-specific basis functions to constrain and sim-
plify the construction of all muscle excitations [26]. In this case,
only the synergy vector weights would be unknown, and the prob-
lem formulation could theoretically become overdetermined.

While synergy-based muscle force optimizations seem promising,
technical challenges remain with implementing such approaches.
When synergy solutions are calculated, a constraint must be placed
on the synergy excitations W or the synergy vectors H such that the
product WH is unique. Some investigators require that the maximum
value of each synergy vector be one [36,37], while others require
that the maximum value of each synergy excitation be one [38]. The
MATLAB nnmf algorithm normalizes the magnitude of each synergy
vector to be one, which means that the amplitude of the correspond-
ing synergy excitations can vary significantly as a function of the
number of muscle excitations included in the analysis. In a muscle
force optimization problem, the simplest approach is to add a con-
straint requiring the magnitude of each synergy vector to be one, as
done in a recent study [28]. Forcing all predicted synergy vectors or
synergy excitations to have a maximum value of one would be more
difficult to implement, since maximum value constraints are not dif-
ferentiable. When experimental EMG data are available from
muscles with high extrapolation VAF, how to use the calculated
synergy excitations also requires further investigation. No reliable
method currently exists for normalizing experimental muscle excita-
tions, and the shapes of calculated synergy excitations are affected
by how the experimental muscle excitations are normalized. Thus, it
is not clear how synergy excitations calculated from experimental
muscle excitations should be used to construct muscle excitations
predicted by muscle force optimizations.

Despite these challenges, at least three recent studies have
attempted to use synergy-based methods to estimate muscle forces

Table 3 Frequency with which each muscle appeared in the
top 10% of combinations across all walking trials. Percent val-
ues were calculated for each data set separately (healthy, stroke
nonparetic leg, stroke paretic leg). Muscles were separated into
groups based on their primary lower extremity functions: hip
uniarticular muscles, hip/knee biarticular muscles, knee uniar-
ticular muscles, knee/ankle biarticular muscles, and ankle uni-
articular muscles.

Table 4 Muscle selection heuristics developed based on Table 3 to identify muscle combinations that extrapolate accurately

Heuristic #1 1) Choose top eight most frequent muscles.

Heuristic #2
1) Choose most frequent muscle from each primary lower extremity function group.
2) Choose remaining most frequent muscles to fill eight muscle combinations.

Heuristic #3
1) Choose most frequent muscle from each primary lower extremity function group.
2) Choose at least two hip/knee biarticular muscles.
3) Choose remaining most frequent muscles to fill eight muscle combinations.

Heuristic #4
1) Choose most frequent muscle from each primary lower extremity function group.
2) Choose at least two ankle uniarticular muscles.
3) Choose remaining most frequent muscles to fill eight muscle combinations.

Table 5 Muscle combinations selected from heuristics defined in Table 4. For these muscle combinations, the extrapolation VAF
exceeded 90% across all data sets and heuristics when using five synergy excitations. These muscle combinations also performed
well using three and four synergies. Reconstruction VAF values were on average greater than extrapolation VAF values by 5.5%.
Muscle combinations generally followed a similar distribution across groups representing all primary lower extremity functions.
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using static optimization. Sartori et al. [26] constructed 34 muscle
excitations using 5 “excitation primitives” fitted to 5 synergy exci-
tations obtained from 16 experimentally measured muscle EMG
signals. Each excitation primitive was a task-generic Gaussian-
shaped impulsive curve representing data collected from two sub-
jects performing four different gait tasks. Using this low-
dimensional representation, the authors were able to match experi-
mental hip, knee, and ankle moments and experimental muscle
excitations reasonably well for both subjects over all four gait
tasks. Walter et al. [27] constructed 44 muscle excitations using 5
synergy excitations extracted from 13 experimental muscle EMG
signals collected from a subject implanted with a force-measuring
knee replacement. They showed that use of 5 synergy excitations
instead of 44 independent muscle excitations improved the accu-
racy of knee contact force predictions. However, muscle excita-
tions predicted by the 5 synergy excitations were only slightly
closer to the 13 experimental muscle excitations than were those
predicted by the 44 independent muscle excitations. Serrancol�ı
et al. [35] found 44 muscle excitations that could be closely fit by
5 synergy excitations derived from ten experimental muscle EMG
signals collected from a different instrumented knee subject. Neu-
romusculoskeletal model parameter values were calibrated using a
two-level optimization approach, and the calibrated model pre-
dicted knee contact and leg muscle forces for walking trials with-
held from the calibration process. Keeping predicted muscle
excitations close to an experimental synergy solution resulted in
accurate knee contact force predictions only when model parame-
ter values were well calibrated. The results of the present study
provide an experimental justification for using synergy-based
methods to construct muscle excitations, including those of deep
muscles requiring fine-wire EMG, in these recent muscle force
optimization studies.

We defined two measures, 90% extrapolation VAF and mean
extrapolation VAF, for the top 10% of subsets, to evaluate the
ability of synergy excitations derived from included muscle sub-
sets to construct muscle excitations not included in the synergy
analysis. In this way, we hoped to eliminate the potential bias of a
single measure in selecting acceptable muscle subsets. We aver-
aged the individual muscle VAF values into a single extrapolation
VAF to facilitate interpretation of extrapolation ability for any
muscle combination. The 90% extrapolation VAF measure was
defined based on typical VAF cutoffs used in synergy analyses
reported in the literature [18–20]. This measure was able to iden-
tify subsets that extrapolated well, but it omitted subsets that
might be deemed acceptable if a small reduction in cutoff was
allowed. This observation motivated us to use the Mean extrapola-
tion VAF for the top 10% of subsets measure for the remainder of
the study. This measure provided finer granularity and showed
clearly that a large number of subsets were on the cusp of achiev-
ing 90% extrapolation VAF.

The four muscle selection heuristics in Table 4 were defined in an
attempt to choose, in a methodological manner, subsets of muscle
excitations that contain the most information (i.e., that extrapolate
well). Heuristics were chosen to reflect obvious interpretations of the
muscle frequency results in Table 3. All heuristics performed well,
identifying muscle combinations representative of all primary lower
extremity functions (e.g., a hip extensor, a hip adductor, a knee
flexor, a knee extensor, either head of biarticular gastrocnemius, sol-
eus, tibialis anterior, and peroneus longus). Reconstruction VAF val-
ues were greater than extrapolation VAF values by 5.5%, on average,
indicating that knowledge of reconstruction VAF may be useful for
estimating the level of extrapolation VAF and that extrapolation
VAF can be expected to be slightly lower than reconstruction VAF.

Though our muscle selection heuristics were generated using
EMG data from only two subjects, the available EMG data were
extensive, and our findings provide unique information about
which muscle EMG signals should be prioritized to maximize
information content (Table 5). Overall, our muscle selection heu-
ristics suggest that given a limited number of EMG channels,
researchers should collect surface EMG data from muscles that

would commonly be selected—uniarticular and biarticular flexor
and extensor muscles from each major muscle group. For uniartic-
ular muscles, these include a hip extensor (GlutMax), a knee
extensor (VasLat over VasMed), an ankle plantarflexor (Sol), and
an ankle dorsiflexor (TibAnt). No uniarticular hip flexor (Iliop-
soas) or uniarticular knee flexor (BiFemShort) was included as
these muscles are difficult to measure with surface electrodes. For
biarticular muscles, selected muscles include a posterior thigh
muscle (SemiMemb, SemiTend, or BiFemLong—no clear prefer-
ence), possibly an anterior thigh muscle (RF), and a posterior calf
muscle (GasMed or GasLat). Our muscle selection heuristics also
suggest that researchers should consider collecting surface EMG
data from some muscles that are not commonly selected—frontal
plane muscles (AddLong or AddMag, TFL, and PerLong) span-
ning all three joints. Identification of these additional muscles is
not surprising, given the unique stabilizing roles they play in the
frontal plane. Other frontal plane stabilizers (GlutMed, Grac)
were not identified, possibly due to the difficulty in measuring
these muscles reliably with surface EMG. However, from Table 2,
if we added one more muscle to the list, it appears that GlutMed
would be a reasonable choice. Interestingly, VasLat appears to be
preferable over VasMed, while GasMed and GasLat, or SemiMem
and BiFemLong, appear in the same list, suggesting that EMG
data from these muscles may contain more independent informa-
tion than commonly believed. While these muscle selection heu-
ristics are useful, we emphasize that they should be viewed with
caution given the limited number of subjects analyzed.

Our methodology was motivated by the potential utility of mus-
cle synergies in predictive modeling applications. Rather than cal-
culating a VAF value for the entire constructed muscle set, VAF
values were calculated for each individual muscle and then aver-
aged. In this way, a poorly constructed muscle would have greater
influence on the measures of extrapolation ability. This behavior
was desired since a poorly constructed muscle excitation can sig-
nificantly influence a predictive walking optimization, especially
if the muscle is a major contributor to a particular lower extremity
joint moment. Since muscle excitations in walking simulations are
constrained to be between 0 and 1, synergy excitations obtained
from synergy analysis of included muscle subsets were normal-
ized to be between 0 and 1 prior to extrapolation. Interestingly,
when synergy vectors were normalized to be between 0 and 1
instead, with the corresponding synergy excitations scaled accord-
ingly, synergy vectors found by synergy extrapolation were less
consistent with those found directly from synergy analysis of the
excluded muscle excitations.

While VAF is a useful and commonly accepted measure of
muscle excitation reconstruction quality, how well a reconstructed
muscle excitation approximates the original muscle excitation
may not be fully captured in a single percentage value. To illus-
trate this issue, we took sample EMG data from the paretic leg of
the stroke subject walking at 0.7 m/s and applied our synergy
extrapolation procedure. For this example, a single included mus-
cle subset was selected using our muscle selection heuristics.
Figure 4 shows the synergy-constructed muscle excitations using
3, 4, and 5 synergies for muscles in the included and excluded
subset pair, and VAF values corresponding to each approximation
are provided in Table 6. As the number of synergies used in the
analyses was increased, VAF values increased and all muscles
reached 90% VAF at 5 synergies. The included muscle excitations
reached higher VAF values and had superior muscle reconstruc-
tion quality in general, matching the shape and magnitude of the
original muscle excitations at 5 synergies. For the excluded mus-
cle subset, some muscle excitations were not approximated quite
as well, failing to match well the shape and magnitude of the orig-
inal muscle excitation. Notably, both the iliopsoas and rectus fem-
oris in the excluded muscle subset were barely able to achieve
90% VAF at 5 synergies and were only slightly improved from
their 3 and 4 synergy reconstructions. Underperforming excluded
muscle excitation reconstructions such as these suggest that addi-
tional synergies extracted from this included muscle subset may
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not improve construction quality further. Furthermore, to repre-
sent these excluded muscle excitations accurately in a predictive
modeling simulation, it may be necessary to include these muscles
in the experimental EMG recordings.

One unexpected observation was that for a given number of
synergies, the nonparetic leg of the stroke subject had a slightly
higher VAF than did the paretic leg (Table 5). This observation is
contrary to results reported by Clark et al. [20]. However, when
we performed synergy analysis using the same eight muscles used
in that study, the VAF for the two legs became nearly equal,
though the paretic leg still had higher variability. Furthermore,
methodological differences exist between how we performed our
synergy analyses and how Clark et al. performed theirs. The fact
that our stroke subject was high functioning may have also
affected the comparison between nonparetic and paretic legs.
Importantly, as other studies have suggested, the number and
choice of muscles had a significant influence on the synergy solu-
tions in the present study [39]. Given the known heterogeneity in
this clinical population, analysis of EMG data from a single stroke
subject is a significant limitation.

In conclusion, this study has demonstrated that for both a
healthy subject and a stroke subject, synergy excitations extracted

Fig. 4 Comparison of reconstructed and experimental (black) muscle excitations for (a) eight included muscle excitations and
(b) eight excluded muscle excitations using three (red), four (green), and five (blue) synergies. Sample EMG data were taken
from the paretic leg of the stroke subject walking at 0.7 m/s. The included muscle excitations were selected based on the previ-
ously described muscle selection heuristics and were reconstructed using the synergy excitations and synergy vectors
obtained from synergy analysis. The excluded muscle excitations were reconstructed using the synergy excitations obtained
from the included muscles and our linear least-squares implementation of synergy extrapolation. VAF values for each recon-
structed muscle excitation are provided in Table 6.

Table 6 VAF values for sample muscle excitation reconstruc-
tions presented in Fig. 4 using 3, 4, and 5 synergy excitations.
For 5 synergies, all muscle excitations, included and excluded,
were reconstructed with at least 90% VAF.

Muscle excitation 3 Synergies 4 Synergies 5 Synergies

In
cl

u
d
ed

AddLong 92.5% 94.3% 99.2%
GlutMax 85.4% 97.1% 98.5%
SemiMemb 96.4% 96.5% 97.1%
VasLat 93.0% 93.6% 95.3%
GasMed 93.6% 96.9% 98.8%
TibAnt 95.3% 95.3% 99.2%
PerLong 94.4% 95.2% 98.6%
Sol 82.2% 99.5% 99.5%

E
x
cl

u
d
ed

GlutMed 91.2% 95.1% 96.1%
Iliopsoas 87.4% 89.6% 90.1%
BiFemLong 93.8% 95.9% 96.0%
RF 88.8% 89.9% 90.1%
Vas Med 96.4% 96.4% 96.3%
TibPost 78.2% 94.8% 97.0%
ExtDigLong 91.5% 92.3% 95.1%
FlexDigLong 92.4% 94.6% 94.5%
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from eight muscle excitations derived from commonly measured
surface EMG signals during walking can be used to construct all
remaining muscle excitations from the same data set with good
accuracy. Even though the extrapolation process was more chal-
lenging for the healthy subject data set (16 excluded muscle exci-
tations to be constructed by synergy extrapolation versus only
eight for each leg of the stroke subject), extrapolation VAF was
similar for both subjects, suggesting that proper selection of
included muscles, and use of a sufficient number of included
muscles, are the most critical issues. These findings support the
use of synergy excitations derived from experimental EMG sig-
nals to construct muscle excitations for missing EMG signals as
part of a muscle force optimization. However, construction of the
missing EMG signals is most likely to work well if the collected
EMG signals follow our proposed muscle selection heuristics.
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Nomenclature

AddLong ¼ adductor longus
AddMag ¼ adductor magnus

BiFemLong ¼ biceps femoris long head
BiFemShort ¼ biceps femoris short head

EMG ¼ electromyography
GasLat ¼ lateral gastrocnemius

GasMed ¼ medial gastrocnemius
GlutMax ¼ gluteus maximus
GlutMed ¼ gluteus medius

Grac ¼ gracilis
PerLong ¼ peroneus longus

RF ¼ rectus femoris
RF2 ¼ rectus femoris (second recording location)

SemiMemb ¼ semimembranosus
SemiTend ¼ semitendinosus

Sol ¼ soleus
TFL ¼ tensor fasciae latae

TibAnt ¼ tibialis anterior
VAF ¼ variance accounted for

VasLat ¼ vastus lateralis
VasMed ¼ vastus medialis
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