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Theoretical Accuracy of
Model-Based Shape Matching for
Measuring Natural Knee
Kinematics with Single-Plane
Fluoroscopy
Quantification of knee motion under dynamic, in vivo loaded conditions is necessary to
understand how knee kinematics influence joint injury, disease, and rehabilitation.
Though recent studies have measured three-dimensional knee kinematics by matching
geometric bone models to single-plane fluoroscopic images, factors limiting the accuracy
of this approach have not been thoroughly investigated. This study used a three-step
computational approach to evaluate theoretical accuracy limitations due to the shape
matching process alone. First, cortical bone models of the femur, tibia/fibula, and patella
were created from CT data. Next, synthetic (i.e., computer generated) fluoroscopic images
were created by ray tracing the bone models in known poses. Finally, an automated
matching algorithm utilizing edge detection methods was developed to align flat-shaded
bone models to the synthetic images. Accuracy of the recovered pose parameters was
assessed in terms of measurement bias and precision. Under these ideal conditions where
other sources of error were eliminated, tibiofemoral poses were within 2 mm for sagittal
plane translations and 1.5 deg for all rotations while patellofemoral poses were within
2 mm and 3 deg. However, statistically significant bias was found in most relative pose
parameters. Bias disappeared and precision improved by a factor of two when the syn-
thetic images were regenerated using flat shading (i.e., sharp bone edges) instead of ray
tracing (i.e., attenuated bone edges). Analysis of absolute pose parameter errors revealed
that the automated matching algorithm systematically pushed the flat-shaded bone mod-
els too far into the image plane to match the attenuated edges of the synthetic ray-traced
images. These results suggest that biased edge detection is the primary factor limiting the
theoretical accuracy of this single-plane shape matching
procedure. �DOI: 10.1115/1.1933949�
1 Introduction
Between 1997 and 2002, the number of Americans afflicted

with arthritis more than doubled to 70 million, making arthritis the
new leading cause of work disability �1�. According to the Arthri-
tis Foundation, the most common form of arthritis, osteoarthritis
�OA�, appears in the knee more than any other joint. Disease
development and progression are influenced by abnormal joint
kinematics under dynamic, weight-bearing conditions �2,3�.
Therefore, knowledge of kinematics in healthy and arthritic knees
would be extremely valuable for understanding the disease’s eti-
ology and predisposing factors as well as for guiding surgical
planning, technique, and procedure.

Few studies have measured three-dimensional �3D� knee kine-
matics under loaded, physiological conditions with submillimeter
accuracy as needed to study arthritis-related issues. Video-based
motion analysis with surface markers has been used widely to
study gross body motion but less to study detailed joint motion
due to the problem of skin and soft tissue motion artifacts �4–10�.
Use of redundant surface markers to correct for motion artifacts
shows promise and evaluation of these methods is ongoing �9,10�.
However, the most direct way to eliminate these issues is to mea-
sure joint motion using x-ray techniques. For artificial knees,
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single-plane fluoroscopy has been used to measure implant motion
directly �11–15�. With this approach, 3D computer aided design
�CAD� models of the metallic components are aligned to each 2D
fluoroscopic image to quantify pose �translation and rotation� pa-
rameters. This approach works well since the metallic components
have precisely known geometric features and produce sharp edges
in fluoroscopic images. For natural knees, since CAD models of
the bones are not readily available from the manufacturer, biplane
fluoroscopy with implanted bone markers has been used instead
�16–18�. Though more accurate than single-plane fluoroscopy, this
approach requires surgical implantation of metal beads which re-
stricts its use to research projects with limited populations.

Building on the example of artificial knee studies, researchers
have recently begun to use single-plane fluoroscopy to measure
natural knee motion �19–21�. For the shape matching procedure,
implant CAD models are replaced with geometric bone models
created from medical imaging data. However, in fluoroscopic im-
ages, cortical bone edges are less well defined than are metallic
implant edges �16�. Consequently, to evaluate the extent to which
this approach can be used to study arthritis-related issues, a theo-
retical accuracy assessment is needed to quantify expected errors
in measured joint �relative� and bone �absolute� kinematics.

This study quantifies relative and absolute accuracy limitations
due to the shape matching process alone when natural knee kine-
matics are measured by aligning flat-shaded, edge detected bone
models to single plane fluoroscopic images. Similar to the ap-

proach used for knee implant components, flat shading is used in
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the shape matching process due to the high computational cost of
repeatedly ray tracing the bone models in different trial poses. The
four specific goals were: �1� to generate synthetic fluoroscopic
images by ray tracing the bone models in known poses, �2� to
develop an automated matching algorithm that finds relative and
absolute bone model pose parameters consistent with the synthetic
images, �3� to assess the procedure under conditions in which all
sources of experimental error are eliminated except those related
to image generation and shape matching, and �4� to evaluate the
extent to which bone edge attenuation in images degrades the
accuracy of the measurements. These results help define the the-
oretical capabilities and limitations of the proposed single-plane
shape matching procedure and provide a bound on the best pos-
sible accuracy one can hope to achieve with this approach.

2 Methods
A three-step computational approach was used to quantify the

accuracy with which edge-detected bone models can be matched
to single-plane fluoroscopic images of the knee. First, geometric
cortical bone models were created from CT data. Next, synthetic
�i.e., computer-generated� fluoroscopic images were created with
the bone models in known poses. Finally, an automated matching
algorithm was developed to align the bone models to the synthetic
images. Though the methodology described here is tailored to
accuracy assessment of synthetic images, it can also be used to
measure in vivo bone motion from single-plane fluoroscopic im-
ages.

2.1 Bone Model Creation. Geometric cortical bone models
of the femur, tibia/fibula, and patella were created from CT scan
data for synthetic image generation and automated shape match-
ing. One healthy subject gave informed consent to undergo fine
and coarse axial CT scans of the left leg as approved by the
institutional review board. Both scans used a 512�512 image
matrix with a pixel size of 0.39�0.39 mm �Fig. 1�a��. The fine
scan used 1.25 mm slices spanning approximately 75 mm above
and below the joint line of the knee, while the coarse scan used
5 mm slices from the hip center to the ankle center. This approach
minimized subject radiation exposure while obtaining accurate
geometric information in the knee region �20�. Interior and exte-
rior cortical bone edges for the femur, tibia, fibula, and patella
were segmented using a commercial watershed algorithm �Slice-
Omatic, Tomovision, Montreal, CA� �Fig. 1�b��, and points defin-
ing the segmented outlines of cortical bone �Fig. 1�c�� were ex-
ported by the software. The segmentation process was semi-
automatic, requiring user intervention only for slices near the ends
of the bones where volume averaging effects make edge detection
more difficult.

The point clouds resulting from the segmentation process �Fig.
2�a�� were converted into polygonal surface models using com-
mercial reverse engineering software �Geomagic Studio, Raindrop
Geomagic, Research Triangle Park, NC�. Polygonal surfaces were
fitted automatically by the software to each fine and coarse point
cloud. The coarse polygonal models were then aligned to their fine

Fig. 1 Segmentation of CT data to generate point clouds for
geometric cortical bone models. „a… Sample CT image of the
femur and patella. „b… Boundaries identified by the watershed
algorithm. „c… Cortical bone contours defined from the
segmentation.
counterparts using the software’s three-dimensional automatic
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alignment algorithm. Alignment was performed only for the femur
and tibia/fibula. For the patella, the fine model was used directly.
Coarse model polygons in the fine scan region were deleted and
the gap between fine and coarse models filled automatically. To
create uniform polygon density, all polygons were subdivided and
then decimated back to the original number of polygons using the
software’s curvature-based decimation algorithm �Fig. 2�b��. The
final bone models were created by boolean subtraction and con-
tained the interior and exterior cortical bone surfaces �Fig. 2�c��.
The tolerance between the final polygonal surfaces and original
point clouds was an average of 0.15 mm over all surfaces of all
bones with a standard deviation of 0.12 mm.

In preparation for fluoroscopic shape matching, anatomic coor-
dinate systems were created in each bone model following an
approach similar to previous studies �17,18�. The mechanical axis
of the leg, as determined from CT slices through the hip and ankle
centers, was used to define the superior–inferior axis for the femur
and the tibia/fibula. The medial–lateral axis of the femur was de-
fined by the transepicondylar axis and of the tibia/fibula by the
line connecting the most medial and lateral points on the tibial
plateau. The third axis was formed from the cross product of the
first two. The coordinate system origin of the femur was defined
as the midpoint of the transepicondylar line, while the origin of
the tibia/fibula was defined as the centroid of the tibial plateau
located at the level of the articular surfaces. The patella coordinate
system was identical to that of the tibia/fibula with the knee as
scanned in full extension. Relative translation and rotation be-
tween the tibia and fibula were assumed to be negligible, and the
two models were combined into one for shape matching purposes
�20�.

2.2 Synthetic Image Creation. Once the bone models were
developed, synthetic �i.e., computer-generated� fluoroscopic im-
ages were created with the bone models in known poses. Three
sets of synthetic image sets were analyzed: �1� images replicating
an in vivo stair rise motion created using ray tracing with a bone
transparency coefficient of 1.0 �completely transparent� and at-
tenuation coefficient of 0.999 �high attenuation�, �2� similar ray-
traced images where the three bone models were randomly trans-
formed as a single rigid body, and �3� flat-shaded images identical
to the second sequence. Similar to the experimental conditions for
the first set, approximately 30 synthetic images were generated for
each of the three image sets.

The first synthetic image set used ray-tracing to evaluate rela-
tive and absolute measurement errors under conditions that simu-
lated an in vivo, loaded experimental situation �18�. The same
subject who provided the CT data gave informed consent to per-
form a stair rise activity under fluoroscopic analysis using a pro-
tocol approved by the institutional review board �Fig. 3�a��. Im-

Fig. 2 Creation of polygonal cortical bone models from the
point cloud data. „a… Segmented point clouds demonstrating
the outer and inner cortical bone boundaries as well as the
regions covered by the fine and coarse scans. „b… Polygonal
surface models fitted to the point clouds using commercial re-
verse engineering software. „c… Cutaway view of polygonal
models showing the outer and inner cortical surfaces of each
bone.
ages were collected at 30 frames/s producing approximately 30
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frames for each of three trials. Bone models of the femur, tibia/
fibula, and patella were manually aligned to the fluoroscopic im-
ages from one of the trials using custom software �Fig. 3�b�� �12�.
Patellar poses were not calculated for images where the patella
moved outside of the field of view �13 images�. Pose parameters
found for one frame seeded the initial guess for the subsequent
frame, where rotational pose parameters were calculated using the
convention of Tupling and Pierrynowski �22�.

Synthetic fluoroscopic images were created from the manually-
determined experimental poses using commercial surface model-
ing and rendering software �Rhinoceros and Flamingo, Robert
McNeel and Associates, Seattle, WA�. The viewing properties
were configured to produce a principal distance and image scale
that matched the experimental setup, while the cortical bone mod-
els were given light attenuating material properties to produce
images similar to x rays. Once the three bone models were placed
in the desired pose, ray tracing was used to generate a synthetic
fluoroscopic image �Fig. 3�c�� that eliminated motion blur, non-
uniform image intensity, soft tissue effects, and other sources of
experimental error. This process was repeated for each pose and
the resulting synthetic images output to the shape matching soft-
ware. An automated matching algorithm �details below� was then
used to align the bone models to the synthetic images to quantify
the relative and absolute errors in the recovered pose parameters
�Fig. 3�d��.

The second synthetic image set tested a wider range of absolute
bone poses by applying random transforms to the bone models in
a fixed relative pose. A single experimental image from the first
set was chosen to define realistic relative pose parameters for the
three bone models �Fig. 4�a��. Ray-tracing was used to generate
synthetic images after random transformations were applied to the
three bone models treated as a single rigid body �Fig. 4�b��. This
approach assured that the relative poses of the bones would be the
same in all random images. The magnitudes of the uniformly-
distributed random transformations were ±50 mm for all three
translations, ±15 deg for the x and y �out-of-plane� rotations, and
±45 deg for the z �in-plane� rotation �11�. Random images were

Fig. 3 Synthetic fluoroscopic image creation process to simu-
late an in vivo stair rise motion. „a… Sample experimental fluo-
roscopic image. „b… Femur, tibia/fibula, and patella bone mod-
els manually matched to the experimental image. „c…
Corresponding synthetic fluoroscopic image generated by ray
tracing the cortical bone models in their manually matched
poses. „d… Femur, tibia/fibula, and patella bone models auto-
matically matched to the synthetic image to evaluate the accu-
racy of the recovered pose parameters.
generated with these settings until 30 were obtained where all
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three bones were within the field of view. For each image, the
bone models were manually placed close to their perceived best
poses prior to automated matching �16,23� since random transfor-
mations do not produce images with pose continuity.

The third image set was identical to the second except that flat
shading was used in place of ray tracing to evaluate the influence
of bone edge attenuation on matching accuracy �Fig. 4�c��. Unlike
ray-traced bone images, flat-shaded images possess sharp edges
similar to those of metallic implant components. Thus, flat shad-
ing eliminates bone edge attenuation visible in both synthetic ray-
traced and experimental fluoroscopic images.

2.3 Automated Shape Matching. To eliminate user expertise
as a confounding factor in the accuracy assessment, an automated
shape matching algorithm was developed. For each bone, the gen-
eral concept was to edge detect the flat-shaded bone model, then
edge detect the same bone in the synthetic fluoroscopic image,
and finally move the bone model until its edges best matched
those in the synthetic image. For consistency, Canny edge detec-
tion was used on both the bone model and the fluoroscopic image
�23�. Matching was achieved via a novel optimization procedure
�details below� whose cost function minimized the normalized
sum of the distances between the two sets of edge points. Dis-
tances were measured in units of pixels and calculated from image
edges, which remain constant for a particular image, to bone
edges, which change as the bone model pose is modified. Normal-
ization by the number of selected image edge points was per-
formed to make the results insensitive to this variable. Interior
geometric features were not detected or used in the cost function
due to the high computational cost that would be incurred by
repeatedly ray tracing, instead of flat shading, each bone model.
To simplify bone edge detection in each fluoroscopic image, a
mask �±4–10 pixels� was placed around the edges of the bone
model in its initial pose, and only those image points located
within the mask were used for image edge detection.

The optimization procedure was based on a univariate search
method minimizing errors in one pose parameter at a time rather
than all six pose parameters simultaneously. The order in which
the six pose parameters were optimized was determined by calcu-
lating the sensitivity of the cost function to changes in each pose
parameter separately. The pose parameters were defined such that
x and y corresponded to in-plane translations while z corre-
sponded to out-of-plane translation measured with respect to the
fixed image plane. The three most sensitive directions �in-plane
pose parameters: x and y translation and z rotation� were opti-
mized first, followed by the three least sensitive directions �out-
of-plane pose parameters: x and y rotation and z translation�. The
entire sequence of six one-dimensional optimizations was iterated
until the specified absolute or relative convergence tolerance was
met.

For each one-dimensional search, a six-step curve-fitting ap-

Fig. 4 Synthetic fluoroscopic image creation process to simu-
late a wide array of random poses with the bone models in a
fixed relative pose. „a… Experimental fluoroscopic image with
manually matched bone models used to define the relative
pose parameters for all random images. „b… Synthetic fluoro-
scopic image generated using ray tracing after application of a
random transformation to the cortical bone models. „c… The
same synthetic fluoroscopic image generated using flat shad-
ing instead of ray tracing to eliminate bone edge attenuation.
proach was used to find the minimum. First, seven points with
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wide initial spacing were sampled along the search direction �Fig.
5�a��. Second, these points were resampled so that the lowest
point was in the middle, shifting the sampled points in one direc-
tion or the other while maintaining the same spacing �Fig. 5�b��.
Third, a cubic polynomial, which only requires four sampled
points, was fit through the seven points using linear least squares
�Fig. 5�c��. A cubic was chosen instead of a quadratic since the
cost function was asymmetric about the minimum for each search
direction. Fourth, the redundant points were used to assess the
goodness of fit and noise present in the cubic. Goodness of fit was
quantified by calculating the adjusted R2 value, while noise was
quantified by calculating the standard error of the estimate s.
Fifth, an automatic step size adjustment algorithm was used to
modify the point spacing until R2 was greater than 0.99 and s was
less than 1. These values were chosen empirically based on expe-
rience with the algorithm. Finally, the minimum was calculated
analytically from the converged cubic curve fit.

Central to this approach is the automatic step size adjustment
algorithm used to produce stable and rapid convergence. Neither
R2 nor s alone was sufficient to identify cubic curve fits that
accurately predicted the minimum. However, when R2 and s in-
formation were combined, four separate combinations �or regions�
were identified that could be used to guide the step size adjust-
ment process �Fig. 6�. These regions were defined as follows:
Region 1—R2�0.99, s�1; Region 2—R2�0.99, s�1; Region

2 2

Fig. 5 Univariate optimization using cubic curve fitting to ac-
count for noise in the cost function. „a… Example of a noisy cost
function in one direction along with seven initial sampled
points. „b… Shifted sampled points using the same spacing to
move the lowest point to the middle. „c… Least-squares cubic
curve fit of the sampled points to evaluate fit accuracy, adjust
sampled point spacing if needed, and calculate the minimum
analytically.
3—R �0.99, s�1; Region 4—R �0.99, s�1. The goal was to
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find a cubic curve fit in Region 2, where the goodness of fit was
high and noise low. Once a candidate cubic fit was generated, the
region was identified from the fits R2 and s values. The step size
was then adjusted based on the following general algorithm: Re-
gion 1, double the step size; Region 2, test for convergence; Re-
gion 3, halve the step size; Region 4, quarter the step size. If the
fit lay in region 2 but did not pass the convergence test, the step
size was halved. In addition, the previous region found was stored
and used to make additional step size adjustments to avoid step-
ping over Region 2 in one direction or the other. This six-step
process was iterated until the specified absolute or relative toler-
ance was met.

2.4 Data Analysis. The accuracy of the automated shape
matching process was quantified in terms of bias and precision
�11,18,23�. Bias was calculated from the mean matching error for
each of the six pose parameters in each synthetic image set, while
precision was calculated from the corresponding standard devia-
tions. For bias results, a Student’s t-test �p�0.05� was performed
to determine if the values were statistically different from zero,
indicating the presence of a systematic error. All synthetic image
generation and automated matching calculations were performed
on a 1.8 GHz Pentium IV PC.

3 Results
Measurement precision for relative pose parameters for image

set 1 was approximately 2 mm for sagittal plane translations and
1.5 deg for all rotations for tibiofemoral kinematics and about
2 mm and 3 deg for patellofemoral kinematics �Table 1�. Mea-
surement precision for medial-lateral translation was approxi-
mately 7 mm for tibiofemoral and 16 mm for patellofemoral ki-
nematics. Systematic error or bias comparable in magnitude to the
precision values was found in most relative pose parameters.
When larger absolute motions were analyzed using image set 2,
bias and precision results were generally consistent with those of
image set 1. The main differences were worse sagittal plane trans-
lational precision and a decrease in varus–valgus and internal–
external rotational bias. Measurement precision improved by a
factor of 2 when flat shading was used in place of ray tracing for
image set 3 and nearly all bias disappeared, with the one remain-
ing bias being small ��0.06 deg�. For all three image sets, relative
precisions were generally less than the sum of the closest corre-
sponding absolute precisions �see below� with the exception of
sagittal plane translations. For example, for image set 1, ti-

Fig. 6 Automatic step size adjustment rationale to select
sampled point spacing for an accurate cubic curve fit. Left axis
is goodness of fit quantified using the adjusted R2 value, while
right axis is noise quantified using the standard error of the
estimate s. Four potential regions can be identified by combin-
ing R2 and s information: Region 1—R2<0.99, s<1; Region 2—
R2>0.99, s<1; Region 3—R2>0.99, s>1; Region 4—R2<0.99, s
>1. Knowledge of the region for the current fit can be used to
adjust the sampled point spacing automatically „see text… until
the fit is in region 2, where R2 is high and s is low.
biofemoral anterior–posterior translation precision was 2.1 mm,
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which was greater than the sum of the femur and tibia/fibula x
translation precisions of 0.27 and 0.42 mm, respectively.

Measurement precision for absolute pose parameters for image
set 1 was within 0.4 mm for in-plane �x and y� translations and
1.3 deg for all rotations for the femur and fibula/tibia and 0.7 mm
and 2.8 deg for the patella �Table 2�. Precision for out-of-plane
translations was within 6 mm for the femur and tibia/fibula and
13 mm for the patella. For all three bones, a negative statistically
significant bias was present in the out-of-plane �z� translation that

Table 1 Relative pose parameter bias±precis
image sets corresponding to an in vivo experim
bones in a fixed relative pose. Directions are w
where A–P is anterior–posterior, S– I is superi
valgus, I–E is internal–external, and F–E is fl

Synthetic images Pose parameters

Set 1
Ray-Traced

Experimental

A– P translation �mm
S– I translation �mm

M –L translation �mm
V–V rotation �deg�
I–E rotation �deg�
F–E rotation �deg�

Set 2
Ray-Traced

Random

A– P translation �mm
S– I translation �mm

M –L translation �mm
V–V rotation �deg�
I–E rotation �deg�
F–E rotation �deg�

Set 3
Flat-Shaded

Random

A– P translation �mm
S– I translation �mm

M –L translation �mm
V–V rotation �deg�
I–E rotation �deg�
F–E rotation �deg�

aBias is statistically different from zero �p�0.05� based on a

Table 2 Absolute pose parameter bias±precision calculated fro
vivo experimental stair rise motion or randomly transformed b
fluoroscopic coordinate system, where x „forward… and y „upwar
to the image plane.

Synthetic images Pose parameters

Set 1
Ray-Traced

Experimental

X translation �mm� −
Y translation �mm�
Z translation �mm�

X rotation �deg�
Y rotation �deg�
Z rotation �deg� −

Set 2
Ray-Traced

Random

X translation �mm�
Y translation �mm�
Z translation �mm�

X rotation �deg� −
Y rotation �deg�
Z rotation �deg� −

Set 3
Flat-Shaded

Random

X translation �mm�
Y translation �mm� −
Z translation �mm�

X rotation �deg�
Y rotation �deg�
Z rotation �deg� −0

a
Bias is statistically different from zero �p�0.05� based on a Student’s t-test
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tended to push the bone models into the image plane. Other sta-
tistically significant biases were present but were not consistent
for all three bones. When image set 2 was analyzed with a larger
range of absolute motions, precision and bias results were gener-
ally consistent with those from image set 1. Significant bias for all
three bones was found for the out-of-plane translation. When the
image generation process was switched to flat shading for the
third image set, precision results improved by roughly a factor of
2, and nearly all statistically significant biases disappeared, in-

calculated from three synthetic fluoroscopic
tal stair rise motion or randomly transformed
respect to the anatomic coordinate systems,

inferior, M–L is medial–lateral, V–V is varus–
on–extension.

Tibiofemoral Patellofemoral

1.5±2.1a 1.1±1.7a

0.84±0.52a −0.42±0.95a

7.7±7.3a 9.5±16a

0.33±1.4 −2.6±2.8a

−1.1±0.95a 1.2±2.6a

−0.051±0.49 −0.096±0.86

1.0±2.1a 1.6±3.5a

1.1±1.9a 0.80±1.9a

3.0±8.1a 7.2±10a

0.53±1.1a −0.53±2.7
0.22±0.93 0.61±1.6a

−0.25±0.39a −0.23±0.44a

0.26±0.86 0.070±0.62
−0.014±0.85 −0.14±0.55

0.50±3.93 0.75±4.0
0.065±0.62 −0.28±1.3
0.098±0.50 0.37±1.8

−0.058±0.18a −0.058±0.20

dent’s t-test.

three synthetic fluoroscopic image sets corresponding to an in
es in a fixed relative pose. Directions are with respect to the
are parallel to the image plane and z „outward… is perpendicular

emur Tibia/Fibula Patella

31±0.27 0.081±0.42 0.16±0.48
3±0.28 −0.49±0.21a 0.66±0.71a

.3±5.6a −11±5.2a −9.8±13a

5±0.47 −0.18±1.3 −2.6±2.8a

9±0.72a −0.41±0.40a 2.4±2.6a

28±0.56 −0.065±0.22 −0.089±0.59

7±0.28a 0.031±0.37 0.41±0.30a

9±0.20 −0.42±0.36a −0.045±0.42
.7±5.7a −11±7.6a −13±10a

2±0.65a −0.043±0.87 −1.2±2.5a

6±0.60a −0.14±0.65 0.60±1.6a

9±0.36a 0.014±0.34 −0.042±0.14

7±0.16 −0.037±0.20 0.078±0.11a

58±0.13a 0.0093±0.18 −0.021±0.34
7±2.3 −0.46±3.1 0.22±4.2
4±0.47 0.028±0.45 −0.39±1.3
0±0.29 −0.074±0.29 0.25±1.7
6±0.093a −0.0012±0.14 0.0064±0.18
ion
en
ith

or–
exi

�
�
�

�
�
�

�
�
�

Stu
m
on
d…

F

0.0
0.04
−3
0.1
0.9
0.0

0.1
0.05
−6
0.3

0.5
0.1

0.03
0.0
0.5

−0.1
0.06
.04
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cluding all out-of-plane translation biases. The three remaining
statistically significant biases were small ��0.08 mm and
0.05 deg�.

4 Discussion
This study used a computational approach to quantify the the-

oretical accuracy with which natural knee kinematics can be mea-
sured using single-plane fluoroscopy and flat-shaded, edge de-
tected bone models when all sources of error are eliminated
except those related to image generation and shape matching.
Three-dimensional cortical bone models were created from CT
scan data and ray traced to generate synthetic fluoroscopic images
with the bones in known poses. An automated matching algorithm
was developed to assess the theoretical accuracy with which the
known pose parameters could be recovered by aligning flat-
shaded bone models to the synthetic images. For synthetic images
that simulated an in vivo, loaded stair rise motion, precision for
tibiofemoral kinematics was 2 mm for sagittal plane translations
and 1.5 deg for all rotations, while precision for patellofemoral
kinematics was 2 mm and 3 deg. Medial–lateral translations were
much less precise, with statistically significant bias present in
nearly all relative pose parameters. Evaluation of absolute pose
parameter errors in images generated using flat shading instead of
ray tracing revealed that systematic out-of-plane translation errors
due to bone edge attenuation were the primary source of measure-
ment bias.

A computational rather than experimental approach was used in
this study to provide a well-controlled environment for evaluating
theoretical accuracy. If the accuracy determined by this method
was poor, little motivation would exist for a thorough experimen-
tal evaluation. Similar errors for the two ray-traced image sets
suggest that the results were reliable and representative of the
accuracy that could be obtained from single-plane fluoroscopic
images under ideal conditions. In experimental practice, however,
additional confounding factors such as imperfect image distortion
correction, motion blur due to long exposure times �16�, less clear
bone edges due to surrounding soft tissue �16�, and imperfect
bone geometric models �23� would make the accuracy worse. For
example, the bone geometric models used in our shape matching
process were identical to those used to generate the synthetic im-
ages, whereas in real life, bone geometric models derived from
CT scan data will never be completely consistent with bone im-
ages measured using fluoroscopy. For one, CT and fluoroscopic
x-ray techniques have different energy absorption and scatter
characteristics. For another, CT scans do not capture bone geom-
etry perfectly due to limited in-plane resolution, volume averaging
over a finite slice thickness, imperfect segmentation of bone
edges, and smoothing during polygonal surface creation. None of
these sources of error were included in our analysis.

Direct comparison of our tibial and femoral precision results
with those reported by other knee fluoroscopy studies is difficult
due to differences in accuracy assessment methods and included

Table 3 Femoral and tibial absolute precision result

Reference
Fluoroscopy

method
Knee
type M

Present study Single-plane Natural
Kanisawa et al. �19� Single-plane Natural
Komistek et al. �20� Single-plane Natural

Banks and Hodge �11� Single-plane Artificial
Hoff et al. �13�a Single-plane Artificial

Mahfouz et al. �15� Single-plane Artificial
Tashman et al. �18� Bi-plane Natural

You et al. �16�a Bi-plane Natural
Kaptein et al. �23� Bi-plane Artificial
Kaptein et al. �23� Bi-plane Artificial

aRMS errors rather than precision results reported
sources of error. Nonetheless, comparison still provides a general
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sense of the extent to which bone edge attenuation may affect the
overall accuracy of the measurement process �Table 3�. Single-
plane fluoroscopy studies of natural knees using image-matched
bone models reported precision results comparable to those of our
study �19,20�, even though these studies used internal bone con-
tours as well as bone edges for matching. Studies of artificial
knees have reported comparable or better precision, likely due to
unambiguous edge identification �11,13,15�. Bi-plane studies us-
ing implanted bone markers or implants achieved an order of
magnitude improvement for all absolute pose parameters �18,23�.
However, when bone models were matched to bi-plane fluoro-
scopic images, precision results were closer to those of our study,
apart from out-of-plane translation �16�. Only two studies reported
relative precision results for the tibiofemoral joint �11,15�. Those
studies used single-plane fluoroscopy with implant models and
reported relative rotation precisions comparable to our study and
relative translation precisions that were approximately two to four
times better. No other studies have reported precision results for
the patella or the patellofemoral joint. High uncertainty for patel-
lar out-of-plane rotations is consistent with limited distinguishing
bone geometry.

Off-the-shelf optimization methods were not chosen for our au-
tomated matching algorithm due to the characteristics of the sys-
tem being analyzed. Global optimization would have required ex-
cessive CPU time due to a large number of costly function
evaluations. Gradient-based optimization was implemented but
not chosen due to a discontinuous cost function in each search
direction �Fig. 5�. As the bone model pose was modified during
gradient calculations, image edge points were compared with
changing bone model edge points, producing inaccurate search
directions and convergence to a local minimum. Response surface
methods fitting more than one pose parameter at a time were also
unsuccessful, since the noisy nature of the search space made it
difficult to select the correct distance between sample points in
multiple dimensions.

Attenuated bone edges appear to be the primary source of sys-
tematic error in the analysis. Elimination of large z translation bias
in the flat-shaded synthetic images indicates that this bias was due
to bone edge attenuation in the ray-traced synthetic images. In
addition to negative z translation bias, y rotation bias was also
strong though not consistent for all three bones. For the two ray-
traced image sets, the femur and patella demonstrated statistically
significant positive y rotation bias. In contrast, the tibia/fibula
demonstrated negative y rotation bias that was statistically signifi-
cant only for image set 1, where smaller out-of-plane rotations
provided less y rotation information from the fibula than in image
set 2. It is therefore possible that shrinking the bone model edges
to accommodate edge attenuation in the ray-traced images was
accomplished not only by pushing the bone models into the image
plane but also by rotating them about the y axis.

The relative precision and bias results for the ray traced image
sets were influenced by kinematic coupling between the absolute

ported by knee fluoroscopy studies in the literature

els matched
In-plane

Trans �mm�
Out-of-plane
trans �mm�

All rots
�deg�

Bones 0.42 5.6 1.3
Bones 1.2 4.0 0.8
Bones 0.45 ¯ 0.66
mplants 0.21 3.9 1.3
mplants 0.46 2.2 0.35
mplants 0.09 1.4 0.40
Markers 0.06 0.06 0.31
Bones 0.23 0.23 1.2

Markers 0.05 0.08 0.07
mplants 0.06 0.14 0.17
s re

od

I
I
I

I

pose parameter errors. Based on kinematics theory, each absolute
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translation error can contribute to all three relative translations
errors and each absolute rotation error to all six relative pose
parameter errors. For example, if a 90° y axis rotation was applied
to all three bones, anterior–posterior translation would now be in
the z direction, which is the least precise. Thus, the worse-than-
expected relative precision results for sagittal plane translations
were likely due to contributions from poor z translation precision.
Relative precision results for medial–lateral translation were actu-
ally better than expected since the two contributing z translation
precisions were biased in the same direction, producing some can-
cellation of errors. Bias in nearly all relative pose parameters can
be explained by contributions from z translation bias to all three
relative translations and y rotation bias to all six relative pose
parameters.

Although many factors contribute to inaccuracies in kinematic
measurements made from single-plane fluoroscopy, this study was
limited to a subset of those factors. Only one pixel size and grid
were selected to represent experimental conditions. Smaller pixels
with a higher resolution would likely produce more accurate re-
sults. Principle distance between the bone models and the image
detector was representative of experimental conditions
�1100 mm�. As the principle distance decreases, the sensitivity to
out-of-plane translation increases. However, if the principal dis-
tance becomes too small, shaft geometry from the femur and tibia/
fibula will no longer be visible in the image, reducing the sensi-
tivity in other directions.

Pixel size may determine the minimum errors for single-plane
fluoroscopy if bone edge attenuation were not an issue. In our
study, the virtual fluoroscope was positioned so that the images
had a resolution of 512�512 pixels covering a region of 200
�200 mm. An edge displayed on the pixel grid could lie between
two pixels, producing an error of half a pixel, or about 0.2 mm in
our set up. The in-plane translation precision for image set 3 was
between 0.13 and 0.20 mm �Table 2�. For the perspective used in
our synthetic images, shifting the bone model edges by half a
pixel would require approximately 2 mm of translation in the z
direction. The out-of-plane translation precision for the flat-
shaded femur and tibia/fibula, which have the most geometry, was
2.3–3.1 mm �Table 2�. Thus, increasing the image resolution
should have a predictable effect on absolute precision for syn-
thetic flat-shaded images with appreciable geometric features.

Additional bone geometry could be used for matching by de-
tecting bone model inner contours with ray-tracing methods
�20,21�. Since cortical bone attenuates x rays much more than
does cancellous bone, ray tracing of bone models produces inter-
nal edges that would approximately double the matchable geom-
etry while also producing attenuated edges in the bone models.
However, ray tracing is much more costly computationally than is
edge detection, which is why ray tracing was not used for bone
model internal edge detection in this study. The extent to which
ray tracing would decrease bias is unknown, though results of
previous studies �19,20� suggest that use of internal bone contours
improves precision in out-of-plane rotations by roughly a factor
of 2.

5 Conclusions
This study quantified theoretical accuracy limitations in a shape

matching process used to measure natural knee kinematics with
single-plane fluoroscopy and flat-shaded, edge detected bone
models. Since the computational assessment was performed under
ideal conditions, results under real life conditions would likely be
worse. Apart from medial-lateral translation, the precision of ti-
biofemoral �2 mm and 1.5 deg� and patellofemoral �2 mm and
3.0 deg� pose parameters may be sufficient for studying changes
in knee kinematics due to different ligament reconstruction meth-
ods �19,21�, differences in anterior–posterior translation between
the medial and lateral condyles �20�, or the approximate location

of the closest point of contact on each tibial condyle �12,13�.
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However, further investigation is required to determine the extent
to which other sources of error contribute to accuracy degradation.
The approach is clearly insufficient for measuring in vivo contact
areas for arthritis-related research applications. If knowledge of
articular surface interactions is desired, bi-plane fluoroscopy with
implanted bone markers should be used �17�. Less accurate
model-based contact area estimates can be derived from single-
plane fluoroscopy if directions to which contact conditions are
less sensitive �i.e., anterior–posterior translation, internal–external
rotation, and flexion–extension� are constrained to match the fluo-
roscopic measurements while directions to which contact condi-
tions are highly sensitive �i.e., superior–inferior translation,
varus–valgus rotation� are free to equilibrate using estimated or
measured loading conditions �24�. Future efforts to improve this
measurement approach should focus on addressing the bone edge
attenuation issue in the fluoroscopic images, possibly by replacing
flat shading with ray tracing of the bone models during the match-
ing process.
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