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Abstract

Dynamic patient-specific musculoskeletal models have great potential for addressing clinical problems in orthopedics and

rehabilitation. However, their predictive capability is limited by how well the underlying kinematic model matches the patient’s

structure. This study presents a general two-level optimization procedure for tuning any multi-joint kinematic model to a patient’s

experimental movement data. An outer level optimization modifies the model’s parameters (joint position and orientations) while

repeated inner level optimizations modify the model’s degrees of freedom given the current parameters, with the goal of minimizing

errors between model and experimental marker trajectories. The approach is demonstrated by fitting a 27 parameter, three-

dimensional, 12 degree-of-freedom lower-extremity kinematic model to synthetic and experimental movement data for isolated joint

(hip, knee, and ankle) and gait (full leg) motions. For noiseless synthetic data, the approach successfully recovered the known joint

parameters to within an arbitrarily tight tolerance. When noise was added to the synthetic data, root-mean-square (RMS) errors

between known and recovered joint parameters were within 10.4� and 10 mm. For experimental data, RMS marker distance errors

were reduced by up to 62% compared to methods that estimate joint parameters from anatomical landmarks. Optimized joint

parameters found using a loaded full-leg gait motion differed significantly from those found using unloaded individual joint

motions. In the future, this approach may facilitate the creation of dynamic patient-specific musculoskeletal models for predictive

clinical applications.

r 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Dynamic patient-specific musculoskeletal models
have great potential for addressing clinical problems in
orthopedics and rehabilitation (Arnold et al., 2000;
Chao et al., 1993; Delp et al., 1998; Pandy, 2001). Since
dynamic models are built upon kinematic models,
dynamic analyses and simulations are influenced by
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the associated kinematic model parameters such as joint
axis positions and orientations (Andriacchi and Strick-
land, 1985; Challis and Kerwin, 1996; Davis, 1992;
Holden and Stanhope, 2000; Stagni et al., 2000).
Therefore, accurate patient-specific kinematic models
are essential for creating predictive patient-specific
dynamic models.

The literature contains three categories of methods to
develop patient-specific kinematic models: anatomical
landmark, functional, and optimization. The goal of
each method is to determine the joint parameters that
tailor the model to the patient. Anatomical landmark
methods use percentages of distances between palpable
bony landmarks to estimate joint parameters (Bell et al.,
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1990; Churchill et al., 1998; Inman, 1976; Kirkwood
et al., 1999; Vaughan et al., 1992). However, they do not
account for subject-to-subject anatomic variations.
Functional methods fit a simple mathematical model,
such as a sphere, to the motion of the distal segment
with respect to the proximal segment (Leardini et al.,
1999; Piazza et al., 2001). While this approach has clear
application to the hip, it is less well defined for other
joints. Optimization methods adjust joint parameters or
model degrees of freedom to fit a kinematic model to
experimental movement data. These methods have been
developed for single-joint kinematic models with un-
known joint parameters (Bogert et al., 1994; Sommer
and Miller, 1980) and multi-joint models with fixed
parameters (Lu and O’Connor, 1999) but not multi-joint
models with unknown parameters.

This study presents a two-level optimization approach
that simultaneously optimizes joint parameters and
motion for multi-joint kinematic models. The approach
works with any pre-defined multi-joint kinematic model
for which experimental data are available from at least
three markers per segment. Furthermore, the experi-
mental data can come from a variety of sources,
including video-based motion analysis with surface
marker triads (Bogert et al., 1994; Leardini et al.,
1999; Luchetti et al., 1998) or clusters (Andriacchi et al.,
1998) and radiostereometric analysis (RSA) with im-
planted bone markers (Imai et al., 2003; Tashman and
Anderst, 2003). The approach is demonstrated by fitting
a 27 parameter, three-dimensional (3D), 12 degree-of-
freedom (DOF) lower-extremity kinematic model to
synthetic (i.e., computer generated) and experimental
movement data for isolated joint and gait motions.
Fig. 1. Three DOF hip joint kinematic model and associated

experimental surface markers. Six joint parameters p1 through p6 (all

positions) are required to define the hip joint center in the pelvis and

thigh coordinate systems.
2. Materials and methods

Two-level optimization finds patient-specific joint
parameters that best fit any pre-defined kinematic model
to a patient’s movement data (Sommer and Miller,
1980). An outer level optimization modifies the model’s
structure (defined by joint parameters p) and repeated
inner level optimizations at each time frame modify the
model’s configuration (defined by generalized coordi-
nates q) given the current model structure. The inner
level optimization uses nonlinear least squares to
minimize the sum of the squares of coordinate errors
(x, y, and z) between model and experimental marker
trajectories:

einnerðpÞ ¼
Xnf

i¼1

min
qi

Xnm

j¼1

X3

k¼1

½mijk � m0
jkðp; qiÞ�

2; ð1Þ

where nf is the number of time frames, qi the model
configuration at time frame i, nm the total number of
markers (nmX6), m an experimental marker, and m0 the
corresponding model marker (Lu and O’Connor, 1999).
The outer level uses any desired optimization algorithm
to modify joint parameters to minimize einner(p)
(Sommer and Miller, 1980; Bogert et al., 1994):

eouter ¼ min
p

einnerðpÞ: ð2Þ

Though the two-level optimization approach is
applicable to any kinematic model, a 27 parameter,
3D, 12 DOF lower-extremity model was created as a
sample application. The model was derived with
symbolic manipulation software (Autolevt, Online
Dynamics Inc., Sunnyvale, CA) and uses a 6 DOF joint
to connect the pelvis to the ground, a gimbal (3 DOF)
joint for the hip (Fig. 1), a pin (1 DOF) joint for the
knee (Fig. 2), and two non-intersecting pin joints for the
ankle (Fig. 3). Anatomical landmarks were used to
estimate nominal values for the 6 hip (Bell et al., 1990), 9
knee (Churchill et al., 1998; Vaughan et al., 1992), and
12 ankle (Bogert et al., 1994; Inman, 1976) parameters.

Experimental movement data for testing the metho-
dology were collected from one subject using reflective
surface markers and video-based motion analysis (Mo-
tion Analysis Corporation, Santa Rosa, CA). Institu-
tional review board approval and informed consent were
obtained. The Cleveland Clinic marker set was used with
additional markers placed on the foot segment. Static
markers over the medial and lateral femoral condyles
and medial and lateral malleoli were used in conjunction
with dynamic markers to create segment coordinate
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Fig. 2. One DOF knee joint kinematic model and associated

experimental surface markers. Nine joint parameters p1 through p9

(four orientations and five positions) are required to define the knee

joint axis in the thigh and shank coordinate systems.

Fig. 3. Two DOF ankle joint kinematic model and associated

experimental surface markers. Twelve joint parameters p1 through

p12 (five orientations and seven positions) are required to define the

talocrural and subtalar joint axes in the shank and foot coordinate

systems (Bogert et al., 1994).
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systems (pelvis, thigh, shank, and foot). Only three
dynamic markers per segment remained during experi-
ments. Unloaded joint experiments (hip, knee, and
ankle) were performed to exercise all functional axes of
each joint individually. Gait data were collected to
investigate simultaneous motion of all three joints under
load-bearing physiological conditions not exercising all
functional axes. Raw marker data were filtered using a
fourth-order, zero phase-shift, low pass Butterworth
Filter with a cutoff frequency of 6 Hz (Bogert et al.,
1994; Reinschmidt et al., 1997; Zeller et al., 2003).

Two types of synthetic movement data were generated
from the experimental data to test the methodology
further. The first type was noiseless synthetic data
generated by moving the model through motions
representative of the individual joint and gait experi-
ments. The second type was synthetic data with super-
imposed numerical noise to simulate skin movement
artifacts. A continuous noise model used in previous
studies (Ch!eze et al., 1995; Lu and O’Connor, 1999;
Roux et al., 2002) for similar purposes was employed.
Noise parameters matched those of Ch!eze et al. (1995).
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Table 1

Summary of root-mean-square (RMS) joint parameter and marker distance errors produced by two-level optimization and anatomic landmark

methods for three types of movement data. Experimental data were from isolated joint and gait motions measured using a video-based motion

analysis system with three surface markers per body segment. Synthetic marker data were generated by applying the experimental motions to a

nominal kinematic model with and without superimposed numerical noise. The isolated joint motions were non-weight bearing and utilized larger

joint excursions than did the gait motion. For the anatomical landmark method, only the inner level optimization was performed since the joint

parameters were specified. The individual joint optimizations used isolated joint motion data while the full leg optimization used gait motion data

Movement data Method RMS error Hip only Knee only Ankle only Full leg

Synthetic without noise Two-level optimization Marker distances (mm) 3.89e-03 1.79e-02 3.58e-03 9.80e-05

Orientation parameters (deg) n/a 4.63e-02 1.85e-02 8.83e-02

Position parameters (mm) 7.78e-05 9.49e-02 4.95e-03 6.05e-03

Synthetic with noise Two-level optimization Marker distances (mm) 5.20 4.23 5.68 5.65

Orientation parameters (deg) n/a 2.51 5.04 10.37

Position parameters (mm) 1.66 3.46 10.04 8.16

Experimental Two-level optimization Marker distances (mm) 3.92 7.10 3.94 7.80

Experimental Anatomical landmarks Marker distances (mm) 5.47 14.23 10.29 13.66
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The two-level optimization procedure was applied to
all three data sets (synthetic data without noise,
synthetic data with noise, and experimental data). For
individual joint trials, parameters for each joint were
optimized separately. For comparison, parameters for
all three joints were optimized simultaneously for the
gait trial. To demonstrate the procedure’s versatility, a
particle swarm global optimizer (PSO) (Kennedy and
Eberhart, 1995) was used for single-joint optimizations
while a gradient-based local optimizer (VisualDOC,
Vanderplaats R&D, Colorado Springs, CO) was used
for multi-joint optimization. Both algorithms were
implemented in a cluster-computing environment.
Root-mean-square (RMS) errors in recovered joint
parameters (synthetic data only) and marker distances
were used to quantify the procedure’s performance.
3. Results

The two-level optimization procedure successfully
recovered joint parameters that best matched the
synthetic and experimental movement data. For syn-
thetic motions without noise, the two-level optimiza-
tions recovered the original marker trajectories to within
an arbitrarily tight tolerance (Table 1—first data set).
The original joint parameters for the hip, knee, and
ankle were recovered with RMS orientation errors of
less than 0.09� and RMS position errors less than
0.1 mm. For synthetic motions with noise, RMS errors
in recovered joint positions (within 10 mm) and orienta-
tions (within 10.4�) increased with joint complexity
(Table 1—second data set) while RMS marker distance
errors (about 5 mm) were comparable to the amplitude
of the synthetic noise (p10 mm). For experimental
motions, the optimizations reduced RMS marker
distance errors by 28% for the hip, 50% for the knee,
62% for the ankle, and 43% for the full leg compared to
errors found using anatomical landmark methods, with
the maximum RMS distance error being 7.8 mm (Table
1—third and fourth data sets). For the individual joint
motions, the RMS difference between optimized
and anatomical landmark parameters was about 7� for
joint orientations and 15 mm for joint positions, while
for the full leg gait motion, they were 14� and 23 mm
(Table 2).
4. Discussion

This study has presented a two-level optimization
approach for tuning a multi-joint kinematic model to
experimental movement data from a specific patient.
The approach works with any pre-defined kinematic
model structure and any experimental movement data
for which at least three markers per segment are
measured. As demonstrated with a 27 parameter, 3D,
12 DOF lower extremity model, two-level optimization
is able to reduce RMS marker distance errors by
roughly a factor of two compared to anatomical
landmark methods.

As with any optimization problem, the issue of local
versus global optima is present for the two-level
formulation. Inner level optimizations are extremely
robust to poor initial guesses, and seeding the subse-
quent time frame with joint angles from the previous
time frame is sufficient to ensure convergence. In
contrast, outer level optimizations are less robust if the
gradient-based algorithm is used. For example, when the
ankle joint optimization was solved with the gradient-
based algorithm using synthetic data with noise and 10
physically realistic initial guesses, it rarely converged to
the PSO solution (Schutte et al., 2003), indicating the
presence of local minima. Convergence was improved by
scaling joint parameters to be within [�1,1]. Thus, the
full-leg optimization used scaling and was seeded with
joint parameters found by the PSO algorithm from
individual joint optimizations.
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Table 2

Comparison between joint parameters predicted by anatomical landmark methods, two-level optimization of individual joints separately, and two-

level optimization of all joints simultaneously. Body segment indicates the segment in which the associated joint parameter is fixed. For a graphical

depiction of the listed joint parameters, consult Figs. 1–3

Joint Joint parameter (mm or deg) Body segment Anatomical

landmarks

Single joint

optimizations

Full leg

optimization

Hip Anterior position Pelvis �59.31 �75.19 �67.81

Superior position Pelvis �91.67 �92.69 �84.13

Lateral position Pelvis 86.28 88.58 134.64

Anterior position Thigh 0.00 �21.23 8.88

Superior position Thigh 0.00 8.14 13.12

Lateral position Thigh 0.00 14.38 67.08

Frontal plane orientation Thigh 0.00 �0.59 17.40

Transverse plane orientation Thigh 0.00 14.85 12.19

Knee Frontal plane orientation Shank �4.07 �2.72 6.19

Transverse plane orientation Shank 1.54 2.40 13.89

Anterior position Thigh 0.00 �14.22 �22.17

Superior position Thigh �392.11 �396.12 �390.54

Anterior position Shank 0.00 �2.50 �14.79

Superior position Shank 0.00 �4.57 �4.99

Lateral position Shank 0.00 14.72 14.10

Ankle (Talocrucal) Frontal plane orientation Shank 8.81 16.64 �5.07

Transverse plane orientation Shank 0.00 9.54 10.37

Anterior position Shank 0.00 16.51 23.56

Superior position Shank �411.32 �411.86 �418.79

Lateral position Shank 0.00 �15.10 �16.33

Ankle (Subtalar) Transverse plane orientation Talus 26.89 27.36 10.24

Transverse plane orientation Foot 23.00 13.20 14.74

Sagittal plane orientation Foot 42.00 45.26 37.39

Superior position Talus �12.40 �21.42 �9.49

Anterior position Foot 91.14 112.44 115.80

Superior position Foot 39.01 38.51 29.38

Lateral position Foot 11.17 2.83 �14.31
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There are two likely explanations for why joint
parameters found by the full-leg optimization differed
greatly from those found by individual joint optimiza-
tions using experimental data. First, loading conditions
were different in these two scenarios. It is possible that
best-fit joint parameters vary as a function of joint
loading (Bogert et al., 1994). Furthermore, loading may
affect which pre-defined joint model is most appro-
priate. In the knee, for example, internal/external
rotation near full extension indicates that a 2 DOF
knee joint may be more appropriate for gait, depending
on the intended use of the model. Second, the amount of
joint excursion was different in each scenario. Individual
joint trials exercised all functional axes of every joint,
whereas the gait trial did not exercise some functional
axes significantly (e.g., hip abduction/adduction). As a
result, noise in the gait data made the cost function
insensitive to large changes in poorly exercised joint
parameters. An important research area for future
studies will be the development of a systematic
methodology for determining which joint parameters
can and cannot be found accurately from a particular
noisy experimental data set.
An important limitation of the two-level optimization
approach is that the quality of the recovered joint
parameters will only be as good as the quality of the
available experimental movement data. This is demon-
strated clearly in the synthetic data with noise optimiza-
tions, where recovered joint parameters did not match
original ones but still resulted in a lower cost function
value. Thus, we can only claim that optimized joint
parameters provide the best possible fit to imperfect
experimental movement data. However, this fit was still
significantly better compared to anatomical landmark
methods.

In conclusion, the proposed two-level optimization
approach is able to tune a pre-defined multi-joint
kinematic model to match a patient’s experimental
movement data as closely as possible. With current
computing power, the approach requires parallel pro-
cessing to complete in a reasonable amount of time.
Local optimization requires less time than global
optimization but does not provide the same level of
confidence in the solution given local minima caused by
measurement noise. Patient-specific kinematic models
created with this approach may facilitate development
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of dynamic musculoskeletal models for predicting
functional outcome following surgical and rehabilitation
interventions.
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