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Response Surface Optimization for Joint Contact
Model Evaluation
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When optimization is used to evaluate a joint
contact model’s ability to reproduce experimen-
tal measurements, the high computational cost of
repeated contact analysis can be a limiting factor.
This paper presents a computationally-efficient
response surface optimization methodology
to address this limitation. Quadratic response
surfaces were fit to contact quantities (contact
force, maximum pressure, average pressure,
and contact area) predicted by a discrete ele-
ment contact model of the tibiofemoral joint for
various combinations of material modulus and
relative bone pose (i.e., position and orientation).
The response surfaces were then used as surro-
gates for costly contact analyses in optimizations
that minimized differences between measured
and predicted contact quantities. The methodol-
ogy was evaluated theoretically using six sets
of synthetic (i.e., computer-generated) contact
data, and practically using one set of experi-
mental contact data. For the synthetic cases,
the response surface optimizations recovered
all contact quantities to within 3.4% error. For
the experimental case, they matched all contact
quantities to within 6.3% error except for maxi-
mum contact pressure, which was in error by up
to 50%. Response surface optimization provides
rapid evaluation of joint contact models within a
limited range of relative bone poses and can help
identify potential weaknesses in contact model
formulation and/or experimental data quality.

"Mechanical & Aerospace Engineering, 231 MAE-A Bldg., and
“Biomedical Engineering, University of Florida, Gainesville, FL
32611; *Cartilage Restoration Center of Indiana, 1550 E. County
Line Rd, Suite 200, Indianapolis, IN 46227, “Regeneration Tech-
nologies Inc., 11621 Research Circle, Alachua, FL 32615.

120

Key Words: surrogate-based modeling, contact
analysis, knee mechanics

Knowledge of in vivo contact forces and pres-
sures in human joints would be valuable for prevent-
ing and treating joint injuries and for improving
the longevity of joint replacements. Unfortunately,
contact conditions are difficult to measure in vivo
(Kaufman, Kovacevic, Irby, & Colwell, 1996),
necessitating model-based analyses to develop pre-
dictions as well as static in vitro testing to evaluate
these predictions. A variety of joint contact modeling
methods have been used for this purpose, including
finite element (Bendjaballah, Shirazi-Adl, & Zukor,
1998; Donahue, Rashid, Jacobs, & Hull, 2002;
Stolk, Verdonschot, Cristofolini, Toni, & Huiskes,
2002), boundary element (Haider & Guilak, 2000;
Kuo & Keer, 1993), and discrete element methods
(Dhaher & Kahn, 2002; Li, Lopez, & Rubash, 2001;
Piazza & Delp, 2001).

Once a joint contact model has been created
that represents an in vitro testing situation, its abil-
ity to reproduce experimentally measured contact
quantities must be evaluated. At least two factors can
complicate this process. The first is uncertainties in
the experimental measurements. These uncertainties
can often be estimated and involve quantities such as
the pose of cadaveric bones measured during testing,
contact pressures and areas recorded by a pressure
sensor, the articular surface geometry determined
from medical imaging data, and material parameters
in the contact model.

A second complicating factor is the high com-
putational cost of repeated contact analysis. Given
an estimated envelope of uncertainty, optimization



methods can be used to determine whether a fea-
sible combination of model parameters could be
used to reproduce all experimental measurements
simultaneously (Fregly, Bei, & Sylvester, 2003). The
problem with this approach is that the high compu-
tational cost of repeated contact analysis can make
such optimizations extremely time consuming and
in some cases even impractical.

Response surface methods have been utilized
successfully in other domains to eliminate computa-
tional bottlenecks in optimization studies. Response
surfaces are multidimensional surface fits to quan-
tities of interest (i.e., responses) predicted by an
engineering model. Once the mathematical form of
a response surface is specified, linear least squares
is typically used to determine the coefficients that
provide the best fit to each response as a function
of the specified design variables. These surface
approximations are then used as surrogates for
costly engineering analyses when the optimization
is performed. To our knowledge, no published stud-
ies have used response surface methods to perform
optimizations of contact problems.

This paper presents a computationally efficient
response surface methodology for performing fast
optimizations involving joint contact models. The
theoretical soundness of the approach is demon-
strated by reproducing six sets of synthetic contact
data generated by a discrete element contact model
of the tibiofemoral joint. The practical applicability
is assessed by attempting to match static experimen-
tal contact data collected from the same cadaveric
specimen used to create the joint contact model.
The results demonstrate not only the soundness and
computational efficiency of the proposed approach
but also its ability to identify potential weaknesses
in contact model formulation and/or quality of avail-
able experimental data.

Methods

Response Surface Approximations

The response surface method can be defined as a
collection of statistical and mathematical techniques
useful for constructing smooth approximations to
functions in a multidimensional design space. Once
a mathematical form has been selected, the coef-
ficients of the approximating function (response
surface) are determined using data from either physi-
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cal experiments or numerical simulations. The most
common mathematical form for a response surface
is a quadratic polynomial. For two design variable
inputs x, and x, and output variable y, a quadratic
response surface would take the form

2 2
v =By + Bix + Boxy + Bax,” + Byxy + Bixyx, (1)

where the [Si (i =0,...,5) are the unknown coeffi-
cients to be fitted from an overdetermined data set.
Response surface approximations work best when
the number of design variable inputs is small (< 10),
since a large number of design variables results in
a complicated design space that is difficult to fit
with low-degree polynomials or other analytical
functions.

To develop response surface approximations
for contact problems, one must identify the design
variable inputs, the outputs to be predicted, and the
mathematical form of the response surface relating
them. For a linear elastic contact model evaluated
using static experimental data, the design variables
are the six relative pose parameters (3 transla-
tions and 3 rotations) and material modulus of the
contacting bodies. The response surface outputs
are contact force, maximum pressure, average
pressure, and contact area. These quantities can
be calculated by the contact model and measured
experimentally for comparison. The hypothesized
mathematical form is a quadratic response surface
with one modification. For a linear elastic contact
model, the material modulus (assumed to be the
same for both bodies) linearly scales each contact
quantity except area (Johnson, 1985). Thus, data for
the response surfaces are generated using a material
modulus of one, the six pose parameters are used as
the response surface inputs, and the response sur-
face outputs (except area) are scaled by the desired
modulus value.

With the response surface formulation specified,
the next step is to determine a sampling scheme
within the design space to provide data for fitting
the response surface. Since this sampling process
is only performed once to generate the response
surfaces, the computational cost of repeated con-
tact analysis is paid only once up front. Though a
6-dimensional quadratic response surface requires
only 28 sample points to solve for all unknown coef-
ficients, we use an overdetermined set of 77 sample
points for consistency with a 6-dimensional face-
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centered central composite sampling scheme. To
cover the design space as uniformly as possible, we
choose these points using Latin hypercube sampling,
which places only one sample point in each row and
column of the 6-dimensional design space.

For contact analyses, we make two modifica-
tions to the Latin hypercube sampling scheme to
improve the quality of the fit. The first modification
accounts for infeasible points. A sampled point is
deemed to be infeasible and is therefore omitted if
the contact force and area predicted by the contact
model are zero. This modification avoids fitting
regions of the design space where no contact is
occurring. The second modification accounts for
outlier points. Once a response surface is generated
from feasible points, the output is compared to the
computed value from the contact model for every
sample point. The point with the largest absolute
percent error above a preselected cutoff value of
10% (a typical value for engineering analyses) is
omitted and the response surface is regenerated from
the remaining sample points. The procedure is iter-
ated until all sample points are below 10% error.
This modification provides the best fit in the regions
of interest where the contact force is large.

After aresponse surface is generated, the quality
of the resulting fit must be assessed, since a poor
quality fit indicates that a different mathematical
form for the response surface should be considered.
We use three common error measures for this pur-
pose. The first measure of fit quality is the adjusted
root mean square error (RMSE, dj). Unlike the stan-
dard RMSE, the adjusted version uses n — p rather
than » in the denominator:

where 7 is the number of sample points (n >28 and
n < 77), p is the number of fitting parameters (p =
28), y, are the actual responses computed by the
contact model, and )A)i are the responses predicted
from the response surface. To provide a relative
measure of fit quality, we also compute the percent
adjusted RMSE using
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%RMSE,,, =

where y represents the average magnitude of the
fitted quantity:
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The second measure of fit quality is the adjusted
coefficient of determination (R?, dj). Similar to the
adjusted RMSE, the adjusted R* value uses n — p
to account for the degrees of freedom remaining
in the fit: .
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where y is the mean of the actual responses.

The final measure of fit quality is the RMSE
calculated from the prediction error sum of squares
(PRESS) statistic. To evaluate the predictive capa-
bility of a response surface, the PRESS analysis
excludes one sample point at a time from the set used
to generate each response surface. The response sur-
face is regenerated using the remaining n— 1 sample
points and the prediction error (called the PRESS

‘residual) at the omitted sample point is calculated.

This process is repeated for all #» sample points, and
the resulting sum of squares of PRESS residuals is
called the PRESS statistic. Finally, a PRESS-based
RMSE is calculated as

PRESS statistic
RMSE,, . = Vv - ©)

Once accurate response surfaces are generated
for the output quantities of interest, they are used in
an optimization to evaluate the contact model’s abil-
ity to reproduce experimental measurements. Each
time the optimization requires contact quantities
from the contact model, a response surface is used
in place of a contact analysis to provide the values.
By fitting multiple outputs of the contact model,
one can create any cost function that can be built
up from response surface outputs without the need
for additional contact analyses.

Discrete Element Contact Model

A discrete element contact model of the tib-
iofemoral joint was constructed to evaluate the
proposed response surface methodology. Details
of the model creation process can be found in Bei
and Fregly (2004). In brief, MRI and CT data were



collected from a single cadaveric knee specimen
cut approximately 15 cm above and below the joint
line and showing no visible signs of degenerative
joint disease. Three titanium bone screws were
inserted into the tibia and femur as landmarks for
contact model alignment. The tibia, femur, and bone
screws were segmented using commercial image
processing software (SliceOmatic, Tomovision,
Montreal, Canada). For simplicity, the menisci were
not segmented and were omitted from the model.
The resulting point clouds from both scans were
exported, aligned, and merged for surface creation
using commercial reverse engineering software
(Geomagic Studio, Raindrop Geomagic, Research
Triangle Park, NC) (Figure 1a). The final composite
geometric model possessed articular cartilage sur-
faces from MRI and cortical bone and bone screw
surfaces from CT (Figure 1b).

Figure 1 — Anterior and posterior views of discrete element
contact model of the tibiofemoral joint. (a) 3D point clouds; (b)
Resulting 3D NURBS surfaces. Surface geometry for articular
cartilage, subchondral bone, and bone screws was obtained
from CT and MR images.

The geometric surfaces for the tibia and
femur (articular cartilage, cortical bone, and bone
screws) were imported into Pro/Mechanica Motion
(Parametric Technology Corp., Waltham, MA) to
construct a multibody contact model. The mean
digitized bone screw locations from static contact
experiments described below were also imported
to determine a nominal alignment of the tibia and
femur. For both bones, a stiff linear spring was
placed between each bone-fixed screw head and its
corresponding lab-fixed digitized location, and a
static analysis was then performed to find the static
pose that best matched the experiments. Differences
between the digitized and modeled bone screw loca-
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tions were on the order of 1 mm. Starting from this
nominal pose, the tibia was fixed to ground and the
femur was connected to the tibia via a 6 degree-of-
freedom (DOF) joint.

Custom contact code was incorporated into
the multibody model and was used to solve for
the medial and lateral contact conditions as a func-
tion of the 6 DOFs between the two bones (Bei
& Fregly, 2004). The contact code implemented a
linear elastic discrete element contact model, where
the pressure p for each contact element on the tibial
articular surfaces (An, Himeno, Tsumura, Kawai,
& Chao, 1990; Blankevoort, Kuiper, Huiskes, &
Grootenboer, 1991; Li, Sakamoto, & Chao, 1997)
was calculated from

_ (d-v)E d
A1+ -2v) A
where E is Young’s modulus of the articular carti-
lage, vis Poisson’s ratio, 4 is the combined thickness
of the femoral and tibial articular cartilage, and d
is the interpenetration of the undeformed contact
surfaces. Both /4 and d were calculated using the
ACIS 3D Toolkit (Spatial Corp., Westminster, CO).
Poisson’s ratio was set to 0.45 (Blankevoort et al.,
1991) and Young’s modulus was set to 1 MPa to
facilitate its use as a design variable in the subse-
quent response surface optimizations.

(7

Synthetic and Experimental
Contact Data

To demonstrate the theoretical soundness and
practical applicability of the proposed response sur-
face optimization approach, we performed repeated
response surface optimizations using synthetic and
experimental contact data. Synthetic contact data
were generated by placing the discrete element knee
model in six configurations consistent with all pos-
sible combinations of three flexion angles (0°, 45°,
and 90°) and two vertically applied loads (500 N and
1000 N). Young’s modulus was set to be the value
obtained from response surface optimization of the
experimental contact data (2.5 MPa).

The experimental contact data were obtained
from the same cadaveric specimen used for contact
model creation. Prior to contact pressure testing,
the menisci, fibula, and patella were removed. The
specimen was mounted in an MTS MiniBionix 858
servohydraulic test machine at a flexion angle of
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Figure 2 — Overview of experimental setup. A human cadaveric knee specimen was mounted in
an MTS servohydraulic test machine with a fixed flexion angle of 30°. An axial load of 1000 N
was applied to the specimen, and intraarticular contact force, pressure, and area were measured in
the medial and lateral compartments using a Tekscan K-Scan sensor. A Microscribe 3DX digitizer
was used to record the location of three titanium bone screws mounted in the tibia and femur at

the final static pose.

30° (Figure 2). A Tekscan K-scan sensor (Tekscan,
South Boston, MA) was inserted anteriorly into the
medial and lateral joint space. The specimen was
then subjected to three trials of a 4-second ramp
load from 200 to 1000 N (Alhalki, Hull, & Howell,
2000). At the end of each ramp, we measured four
experimental quantities of interest from the medial
and lateral compartments: contact force, maximum
pressure, average pressure, and contact area. In
addition, the locations of the six screw heads were
digitized using a Microscribe 3DX digitizer Immer-
sion Corp., San Jose, CA) possessing an accuracy
of 0.23 mm. The resulting data points from the K-
scan sensor and digitizer were averaged over the
three trials and used for practical evaluation of the
response surface optimization methodology.

Response Surface Evaluation

The response surface methodology was evalu-
ated using three approaches. First, the statistical
measures described above were used to evaluate
the ability of each response surface to reproduce

the sample points generated by the discrete element
contact model. Eight responses surfaces (medial and
lateral contact force, maximum pressure, average
pressure, and contact area) were created for each
of the seven data sets (six synthetic and one experi-
mental). For each data set, pose variations for the
77 Latin hypercube sample points were defined to
be within £1 mm and +1° from the nominal pose
based on the estimated envelope of experimental
pose uncertainty.

Second, the sensitivity of the eight contact quan-
tities to pose variations of +1 mm and £1° away
from the nominal experimental pose was calculated
to evaluate the reasonableness of using quadratic
response surfaces. For each data set, the shape of
each sensitivity curve provided two important pieces
of information: whether a quadratic response surface
is an appropriate analytical model, and whether the
variations in contact quantities with small pose
variations are large enough to warrant the use of
the response surface methodology. All sensitivity
curves were generated using a Young’s modulus



value of 2.5 MPa, consistent with the experimental
contact data.

Third, optimizations were performed to evalu-
ate the accuracy and speed with which the response
surfaces could recover known or measured contact
quantities. For each data set, 1000 nonlinear least-
squares optimizations were performed with the
Matlab Optimization Toolbox (The Mathworks,
Natick, MA) to seek the global optimum. The cost
function g(x) minimized percent errors in synthetic
or experimental average (p, ) and maximum (p, )
pressures in both compartments simultaneously with
a penalty term on contact force (F) errors:

(see Eq 8 below)

where pave (x), p (x), and Ja (x) are the average
pressure (MPa), maximum pressure (MPa), and
contact force (N) predicted by a response surface.
In this equation, X represents the six pose parameter
design variables, E is the material modulus design
variable, and w = 10° is the weight of the penalty
term. This cost function mimics the results of a
static analysis, since contact forces are matched
closely while relative errors in other cost function
terms are minimized. Uniformly distributed random
initial guesses were selected within the bounds +1

2 E)= (P = EBrue X))/ P Voo + (P

((pmax - Eﬁmax (X ))i{ Proax )ied:’a!
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for the first six design variables and 1 to 10 for the
seventh. A final discrete element contact analysis
was performed using the optimized design variables
from the best solution to assess the accuracy of the
final result.

Results

Quadratic response surfaces fit the eight contact
quantities extremely accurately for each set of 77
sample points. On average, for the seven sets of
response surfaces, RMSE , was less than 2.2,
%RMSE ,  Was less than 3. 0 and R, ; Was greater
than 0.997 (Table 1), with correspondmg worst-case
results of 3.4, 5.8, and 0.993, respectively. For each
response surface, a minimum of 0 and maximum of
23 infeasible/outlier points were eliminated from
the 77 sample points.

Sensitivity curves for the eight contact quanti-
ties as a function of pose parameter changes dem-
onstrated linear or approximately quadratic trends,
with the results varying with pose parameter and
side (Figure 3). For all seven data sets, contact
quantities were highly sensitive to changes in
superior-inferior translation, moderately sensitive
to changes in varus-valgus rotation, and relatively
insensitive to changes in all other pose parameters.

- Ef}we (X )) / P )jirxem! +

2

((pmax - Epmax( )) Prox )Iarxerai + (8)

(7~ B2 F g + (7 - EFG)) Pl

Table 1 Statistical Measures (M + SD) of Response Surface Accuracy From

the 77 Latin Hypercube Sample Points

Predicted

quantity Side %RMSE,; %RMSE ., R’adj

Force Medial 0.85 + 0.37 1.29 + 0.63 1.000 + 0.000
Max pressure 111 + 1.11 1.72 = 2.02 0.999 + 0.003
Avg pressure 1.90 = 0.97 257 = 1.27 0.998 + 0.002
Area 2.10 = 0.93 293 + 1.21 0.997 + 0.002
Force Lateral 0.56 = 0.36 0.81 = 0.51 1.000 = 0.000
Max pressure 0.57 £ 0.15 0.80 + 0.24 1.000 = 0.000
Avg pressure 0.67 + 0.52 0.96 + 0.75 0.999 + 0.001
Area 0.73 + 043 1.02 + 0.64 0.999 + 0.001

Note: Results indicate mean =+ standard deviation as calculated from the 7 data sets (6 synthetic and 1 experimental).
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Figure 3 — Sensitivity of predicted contact force (Force), maximum pressure (Pmax), average pressure (Pave), and contact
area (Area) to pose parameter variations of +1 mm and 1° about the nominal experimental pose. (a) Medial side; (b) Lateral
side. X is the anterior-posterior direction, Y the superior-inferior direction, and Z the medial-lateral direction.



In addition, medial contact quantities were more
sensitive to pose parameter changes than were lateral
contact quantities.

The best solution found from each set of 1000
response surface optimizations matched the syn-
thetic or experimental contact quantities extremely
well. For the six synthetic data sets, the response
surface optimizations recovered the known values
of all contact quantities with an average error of
less than 1.0% and maximum error of 3.3%, with
contact force being recovered with zero error to
three decimal places (Table 2). Young’s modulus
was recovered with an average error of 2.6% and
maximum error of 7.7%. While errors as large as
39.6% (internal-external rotation) were observed in
the final pose parameters, the two most sensitive
pose parameters (superior-inferior translation and
varus-valgus rotation) exhibited errors of at most
2.63% and 4.43%, respectively.

When a final contact analysis was performed
with the discrete element contact model at the best
solution found, average errors in all contact quan-
tities were below 1.3% with a maximum error of
2.8%, consistent with the response surface fitting
errors (Table 2). For the experimental data set, the
response surface optimizations matched all medial
and lateral contact quantities to within 6.3% error
with the exception of maximum contact pressure,
which was in error by as much as 50% (Table 2).
The optimal value of Young’s modulus was found
to be 2.5 MPa. For each data set, 1000 response
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surface optimizations required approximately 5
minutes of CPU time on a 2.8 GHz Pentium 4 PC,
with the best solution never reaching the bounds of
the design variables.

Discussion

This paper has presented a novel response surface
optimization methodology that eliminates the
computational limitations of performing repeated
contact analyses when evaluating a contact model’s
ability to reproduce experimental data. The theoreti-
cal soundness of the methodology was demonstrated
by using response surface optimization to recover
six sets of synthetic contact data generated by a
discrete element model of the tibiofemoral joint.
Recovered pose parameter values were the most
accurate for the parameters to which the contact
quantities were the most sensitive. The practical
applicability was shown by using response surface
optimization to evaluate the discrete element mod-
el’s ability to reproduce static experimental contact
data collected from the same cadaveric specimen
used to construct the model.

The optimized value of Young’s modulus (2.5
MPa) was within the range of values reported in the
literature for short-term loading (0.4 to 26.8 MPa;
Hori & Mockros, 1976; Nieminen et al., 2004;
Popko, Mnich, Wasilewski, & Latosiewicz, 1986;
Setton, Elliot, & Mow, 1999; Shephard & Seedhom,
1997). By replacing computationally costly contact

Table 2 Percent Errors in Contact Quantities From Response Surface and

Discrete Element Models at the Best Solution Found From 1000 Optimizations

Synthetic Data

Experimental Data

Contact Response Discrete Response Discrete
quantity Side surface element surface element
Force Medial  0.00 +0.00 -0.02+£1.17 0.00 -0.03
Max pressure 0.16 £0.62 0.60 +1.11 —49.5 -50.0
Avg pressure -0.98 +£1.33 -0.31 £1.60 —4.13 —2.86
Area 0.55 +1.50 0.30+1.25 4.93 2.75
Force Lateral  0.00 +0.00 -0.05 +0.39 0.00 -0.28
Max pressure 0.00 +0.77 0.03 +0.92 154 16.2
Avg pressure -0.57+1.17 —0.68 +1.38 5.48 6.24
Area 0.66 + 1.56 1.27 £0.97 —4.96 -5.77

Note: Synthetic data results indicate mean =+ standard deviation errors from the 6 synthetic data sets.
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analyses with quadratic RS approximations, optimi-
zations that vary the relative pose of the contacting
bodies can be performed rapidly to minimize dif-
ferences between predicted and measured contact
quantities.

Use of response surfaces to replace repeated
contact analyses in optimization studies is worth-
while for several reasons. First, response surface
tends to smooth out noise in the design space,
thereby reducing the risk of entrapment in a local
minimum during optimization.

Second, response surface approximations are
computationally efficient. Rather then repeating
costly contact analyses during an optimization, a
single set of costly contact analyses is performed
once up front to generate the necessary sample points
for response surface approximation. Extremely
fast function evaluations allow one to search for
the global optimum using either repeated gradient-
based optimizations or global optimization.

Third, response surface optimizations are con-
venient to implement. Optimized contact solutions
can be founded utilizing any commercially available
optimization algorithm once the response surface
approximations are constructed.

Fourth, a variety of optimization problem for-
mulations can be evaluated quickly. Each contact
quantity that could potentially appear in the cost
function or constraints can be fitted with its own
response surface. Different cost functions can then
be constructed by weighting contributions from the
different response surfaces.

While the computational benefits of the
response surface methodology are significant for
a discrete element joint contact model, they would
be even more significant for a boundary element
or finite element joint contact model. On average,
77 discrete element contact analyses to generate
sample points required approximately 23 minutes
of CPU time on a 2.8 GHz Pentium 4 PC, which
is not computationally burdensome. However, 77
static analyses performed with a boundary element
or finite element contact model would be expected
to take significantly longer. The higher up-front cost
to generate response surfaces would be recovered
quickly when performing optimizations. Since the
use of response surfaces in place of the discrete ele-
ment contact model reduced optimization time by a
factor of 20,000, even larger computational benefits
would be expected if response surfaces were used

in place of boundary element or finite element joint
contact models.

Our results highlight at least three experimental
inaccuracies that may have contributed to large max-
imum pressure errors. First, insertion of a relatively
stiff sensor into the joint space may have affected
maximum pressure measurements as a function of
conformity (Wu, Herzog, & Epstein, 1998). Fifty
percent underprediction of maximum pressure on
the moderately conformal medial side and 15%
overprediction on the nonconformal lateral side
are consistent with the conformity trends reported
by Wu et al. (1998), where maximum pressure errors
were estimated to be between 10 and 26%.

Second, nonuniform response of the sensels on
the Tekscan sensor may have caused the measured
maximum pressures to be inaccurate. However, the
use of a weighted average to calculate maximum
pressure would attenuate this effect.

Third, small errors in articular surface geometry
may have resulted in large errors in predicted maxi-
mum pressures. During MR imaging, the articular
cartilage was mildly deformed due to ligamentous
forces, resulting in articular surface geometry in the
model that did not represent the undeformed state.
Furthermore, the MR imaging sequence possessed
an in-plane resolution of only 0.3 mm. This value
is large considering the sensitivity of maximum
contact pressures to changes in superior-inferior
translation, especially on the medial side where the
largest error occurred (Figure 3). Unfortunately,
there is no simple way to modify general surface
geometry in a parametric fashion to investigate the
influence of small surface geometry changes on
maximum pressure errors.

Our results also highlight at least three pos-
sible contact model inadequacies. First, the lack of
coupling between the contact elements may have
affected the predicted maximum pressures. How-
ever, due to the thinness of the elastic cartilage
layers, the resulting errors would likely be small.

Second, inhomogeneous material properties
may have contributed to errors in predicted maxi-
mum pressures. Though homogeneous cartilage
material models have been used frequently in
published studies (Blankevoort et al., 1991; Haut,
Hull, Rashid, & Jacobs, 2002; Périé & Hobatho,
1998), recent studies have reported significant
local variations in Young’s modulus and Poisson’s
ratio (Hasler, Herzog, Wu, Miiller, & Wyss, 1999;



Jurvelin, Arokoski, Hunziker, & Helminen, 2000;
Laasanen et al., 2003). Mukherjee and Wayne (1998)
reported that articular cartilage regions with the
highest Young’s modulus correspond to regions
with the highest contact pressure and cartilage thick-
ness. This observation is consistent with our results,
where an increase in Young’s modulus on the medial
side (i.e., side with highest in vivo contact pressures)
would reduce maximum pressure error.

Third, the omission of time-dependent fluid flow
effects may have affected the predicted maximum
pressures. However, for loading over a short time
period, an elastic contact model may still provide
a reasonable approximation of the in vivo situa-
tion depending on the intended application of the
model (Donzelli, Spilker, Ateshian, & Mow, 1999;
Mow, Lai, & Holmes, 1982; Shepherd & Seedhom,
1997).

The main limitation of the proposed response
surface methodology is that it has only been evalu-
ated for relatively small variations in pose param-
eters. Other surrogate modeling methods such as
Kriging, support vector machines, or multidimen-
sional spline fitting may be required to cover the full
range of pose variations that a particular anatomic
joint may experience in vivo. For example, Lin et
al. (Lin, Fregley, Haftka, & Queipo, 2005) recently
developed a novel spline fitting approach to model
the relationship between sagittal joint pose and the
net contact forces and torque exerted by the femoral
component on the tibial insert of an artificial knee.
When used in a planar multibody dynamic simu-
lation, the spline-based surrogate contact models
reduced computation time from 28 minutes to
less than 90 seconds. Further research is required
to extend surrogate contact modeling methods to
large 6-DOF pose variations.
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