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Disorders of the human neuromusculoskeletal system such as osteoarthritis, stroke, cerebral palsy, and paraplegia significantly
affect mobility and result in a decreased quality of life. Surgical and rehabilitation treatment planning for these disorders is
based primarily on static anatomic measurements and dynamic functional measurements filtered through clinical experience.
While this subjective treatment planning approach works well in many cases, it does not predict accurate functional outcome
in many others. This paper presents a vision for how patient-specific multibody dynamic models can serve as the foundation
for an objective treatment planning approach that identifies optimal treatments and treatment parameters on an individual
patient basis. First, a computational paradigm is presented for constructing patient-specific multibody dynamic models.
This paradigm involves a combination of patient-specific skeletal models, muscle-tendon models, neural control models,
and articular contact models, with the complexity of the complete model being dictated by the requirements of the clinical
problem being addressed. Next, three clinical applications are presented to illustrate how such models could be used in the
treatment design process. One application involves the design of patient-specific gait modification strategies for knee
osteoarthritis rehabilitation, a second involves the selection of optimal patient-specific surgical parameters for a particular
knee osteoarthritis surgery, and the third involves the design of patient-specific muscle stimulation patterns for stroke
rehabilitation. The paper concludes by discussing important challenges that need to be overcome to turn this vision into
reality.
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1. INTRODUCTION

When the human neuromusculoskeletal system is
impaired, mobility is often limited, leading to a decreased
quality of life [1]. Common clinical examples include
osteoarthritis, stroke, cerebral palsy, and paraplegia.
Planning of surgical and rehabilitation treatments for
these disorders has historically been based on clinical
experience, static anatomic measurements (e.g., x-rays),
and dynamic functional measurements (e.g., gait
analysis). To select a treatment and associated parameters,
the clinician uses the available data to construct a “mental
model” of the patient in his or her mind and runs the
treatment options under consideration through this model.
Thus, given the same clinical data for a particular patient,
two different clinicians may make very different treatment
decisions.

Due to the complexity of the human
neuromusculoskeletal system, this subjective treatment
planning approach has several negative consequences.
First, existing treatments that are generally reliable may
still be unreliable in a large number (though small
percentage) of cases. For example, total knee replacement
surgery is generally reliable, but a malpositioned
component can result in pain, poor patient function, and
eventually the need for revision surgery [2]. Second,

existing treatment approaches that are unreliable but
potentially valuable are avoided by clinicians; hence their
benefits are not experienced by patients to the extent
possible. For example, high tibial osteotomy surgery,
where lower leg bone geometry is altered to make a “bow-
legged” patient with knee osteoarthritis slightly “knock-
kneed,” has the potential to delay or even avoid the need
for total knee replacement but is underutilized due to
unreliable outcomes [3]. Third, new treatments are
difficult to design since they are typically identified using
a time consuming and costly trial-and-error experimental
approach.

What, then, is the path to increased reliability and
optimized functional outcome? One possibility is to
replace the subjective mental models currently used in
clinical practice with objective engineering models that
obey the laws of physics and physiology. If engineering
models can be constructed that accurately represent the
neuromusculoskeletal systems of individual patients,
clinicians could use these models to explore different
treatment options prior to selecting the final intervention.
By incorporating optimization principles into the
exploration process, it may be possible to design
personalized treatments that maximize clinical outcome
on a patient-specific basis and that eliminate much of
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the subjectivity from the decision making process.
Objective predictions of post-treatment function made
by patient-specific engineering models would need to be
validated before such models could be utilized clinically.

Multibody dynamic models have the potential to play
a central role in the design of personalized treatments
for neuromusculoskeletal disorders. The human
neuromusculo-skeletal system can be viewed as a servo-
controlled multibody dynamic system. Bones serve as the
rigid bodies, articular surfaces and ligaments form the
joints, muscles are the actuators, and the central nervous
system acts as the controller. A problem with the bodies,
joints, actuators, or controller becomes evident in
movement limitations of the system. For example,
osteoarthritis involves problems with the bodies and
joints, stroke and paraplegia involve problems with the
actuators and controller, and cerebral palsy involves
problems with the bodies, actuators, and controller.
Regardless of the source of the problem, multibody
dynamic skeletal models can serve as the underlying
structure to which muscle-tendon actuator models, neural
control models, and joint contact models are added. Thus,
multibody dynamics provides a natural foundation for
patient-specific modeling efforts.

This paper presents a vision for how patient-specific
multibody dynamic models could be used to design new
or improved treatments for clinical problems involving
the human neuromusculoskeletal system. The ultimate
goal is creation of high fidelity patient-specific multibody
dynamic models that can be used to predict optimal
treatments for individual patients. First, a computational
paradigm is presented for constructing patient-specific
multibody dynamic models. Next, three clinical
applications are presented to illustrate how such models
could be used in the treatment design process. Finally,
the paper concludes by discussing important challenges
that need to be overcome to turn this vision into reality.

2. CONSTRUCTION OF PATIENT-SPECIFIC
MODELS

Patient-specific neuromusculoskeletal models are
composed of several component models. At the core is a
patient-specific skeletal model that accounts for the
anatomic structure of the patient. Added to this model
are muscle-tendon models that account for muscle force-
generating characteristics and muscle lines of action
around bones, neural control models that account for how
the brain coordinates muscle forces, and joint contact
models that account for how articular surfaces interact.
State-of-the-art methods used to construct each of these
component models are described below.

It is important to emphasize that not all of these
component models are needed to address any particular
clinical problem. The minimum complexity model that

satisfies the needs of the problem at hand should always
be selected. Thus, some clinical problems will not require
models of muscle-tendon actuators. Other clinical
problems will not require joint contact models. Yet other
clinical problems will not require a neural control model.
However, for every clinical problem discussed below, a
patient-specific multibody dynamic model will serve as
the foundation.

2.1. Patient-specific Skeletal Models

A patient-specific multibody dynamic skeletal model is
basically a robotic linkage model whose joints are
engineering constraint-based joints (e.g., pin, ball-and-
socket) controlled by torque actuators. These actuators
account for the net effect of all muscle, contact, and
ligament forces applied across the joints. Thus, no models
of individual muscles or their lines of action are included
at this point.

The primary challenge of creating a patient-specific
dynamic skeletal model is not deriving the equations of
motion (which can be done using a variety of commercial
or free software programs such as Autolev, SD/Fast, Pro/
Mechanica, SimMechanics, or SimBody) but rather
calibrating the model’s parameter values to movement
data collected from the patient. Two categories of model
parameters are present at this stage: joint parameters
defining the position and orientation of each joint in
adjacent body segments, and inertial parameters defining
the mass, mass center, and central principal moments of
inertia of each body segment (also referred to as “body
segment parameters” by some authors). A number of labs
have developed methods for calibrating joint parameter
values [4-14], and sensitivity studies have shown that joint
torques calculated from inverse dynamics are sensitive
to errors in joint parameter values [15-18]. Calibration
of inertial parameter values for activities of daily living
that do not involve “fast” movements (e.g., gait) appears
to be less critical, as inverse dynamics joint torques are
relatively insensitive to errors in inertial parameter values
as long as a multibody dynamic model with joint
constraints is used [15]. However, a similar conclusion
may not apply to faster athletic movements such as
running, jumping, throwing, and kicking.

Most methods for calibrating joint parameter values
to a patient’s movement data utilize numerical
optimization [4-6, 8, 10]. First, a kinematic skeletal model
is constructed with joint parameters that define the
positions and orientations of the joints in the body
segments and marker parameters that define surface
marker locations in the body segments. This step requires
an assumed skeletal model structure (e.g., assuming that
the knee can be modeled as a pin joint). Next,
experimental movement data are collected from the
patient. To make the joint parameter values unique,
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calibration motions are required if the activity to be
simulated does not exercise all functional axes
sufficiently, where “sufficient” is approximately 25 deg
of rotation [19]. For example, since gait does not exercise
the ankle inversion-eversion axis, an ankle circumduction
motion can be used to find a unique inversion-eversion
axis [8]. Finally, a series of optimization problems is
solved that finds joint and marker parameter values such
that markers on the kinematic model can be aligned as
closely as possible with the experimentally measured
marker locations. Optimization of the calibration trials
is performed one joint at a time, followed by optimization
of the functional activity trial (e.g., gait) [5]. One of the
primary advantages of constructing patient-specific
kinematic models in this fashion is that the resulting
model parameter values are much less sensitive to
selected marker placement locations on the skin than
methods that depend on correct identification of
anatomical landmarks [9, 10].

For the functional activity optimization, joint
parameters that are not exercised can be handled one of
two ways. Either the values of these parameters can be
constrained to those found by the calibration trials, or
else changes in these parameter values can be minimized
by the cost function to avoid finding unrealistic solutions
[5]. For example, joint parameters specifying the medial-
lateral position of the hip center are not well defined by
gait data. If these parameter values are adjusted during
optimization of a gait trial, noise in the marker data may
produce a slightly lower cost function value by moving
the hip center laterally off the pelvis, even though such a
change is physically unrealistic.

Each optimization can be formulated as either a one-
level or two-level problem [5, 6]. In the two-level
formulation, both levels seek to minimize the sum of the
squares of the errors between model and experimental
marker coordinates. The outer-level optimization adjusts
design variables related to joint and marker parameter
values, while the inner-level performs a separate
optimization for each time frame by adjusting the model’s
generalized coordinates given the current guess for the
joint and marker parameter values. The primary
disadvantage of this approach is that performing repeated
inner-level optimizations can be computationally costly
[6]. In the one-level formulation, adjustment of the
model’s generalized coordinates is moved to the outer
level by parameterizing the joint trajectories using B-
spline or polynomial plus Fourier coefficients [20, 21].
Though this additional parameterization step imposes an
assumed smoothness on the experimental data, it
significantly reduces computation time compared to the
two-level formulation. With either formulation, the
motions of the generalized coordinates are found as a
byproduct.

As an alternative to optimization, several studies have
utilized Kalman filtering techniques (e.g., extended
Kalman filters and unscented filters) to find joint and
marker parameter values and joint motions
simultaneously [11-14]. Since multibody dynamic models
of human movement are highly nonlinear, these methods
are significantly faster computationally than optimization-
based approaches, making them a better choice for
clinical applications where patient-specific models would
need to be constructed during a single office visit. Though
filtering methods have not achieved widespread use in
the biomechanical modeling and simulation community,
they are gaining recognition.

2.2. Patient-specific Muscle-tendon Models

Creation of patient-specific muscle-tendon models
requires calibration of musculoskeletal geometry (i.e.,
muscle origins/insertions and moment arms) and muscle
force generating properties. With current capabilities,
calibration of musculoskeletal geometry is best achieved
using magnetic resonance (MR) imaging data. Scanning
parameters can be selected to enhance the brightness of
fatty tissue so that the muscle boundaries are easily visible
[22, 23]. The boundaries of anatomic structures of interest
(e.g., muscles, bones, articular surfaces) can be
segmented using commercial image processing software
(e.g., SliceOmatic, Mimics, Analyze, Matlab, 3D Doctor)
and the resulting point clouds converted to geometric
surfaces using commercial reverse engineering software
(e.g., Geomagic, Rhinoceros).

Converting the geometric surface models into
multibody dynamic models requires identifying muscle
origins and insertions on the bones and the way muscles
wrap around bones and other muscles. Though muscles
attach to bones over an area, most musculoskeletal models
assume that they attach to bones at a point, necessitating
the use of multiple muscle lines of action to represent
broad muscles such as gluteus maximus. Even narrower
muscles such as tibialis anterior may require multiple lines
of action to eliminate sensitivity of predicted motions to
small errors in muscle insertion points. Musculoskeletal
modeling software (e.g., SIMM, AnyBody, LifeMOD,
OpenSim) provides built-in functionality for defining
muscle lines of action as a series of line segments with
parameterized muscle wrapping surfaces represented by
spheres, cylinders, and ellipsoids [24, 25]. Muscle paths
modeled with this method have been validated against
experimental moment arm data reported in the literature
[26]. The primary challenges with this methodology are
the cost of obtaining the MR scan data, determination of
appropriate scanning parameters, the time and expertise
required to segment the anatomic structures of interest
from the resulting images, and the time and effort required
to convert the resulting geometric models into a
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parameterized multibody model. Though less accurate,
an alternative to using patient-specific geometry is to scale
a nominal musculoskeletal model to match measurements
made from the patient [27].

Calibration of muscle force generating properties is
challenging as well. Most multibody dynamic models that
include models of individual muscles use a Hill-type
muscle-tendon model. This model treats muscle as a
contractile element in parallel with a passive elastic
element, with the muscle attached in series and at an angle
(called the pennation angle) with a passive elastic tendon
[28, 29]. Five parameter values are required to calibrate
a Hill-type model to a particular muscle of a specific
patient: (1) peak isometric force, (2) corresponding
optimal muscle fiber length, (3) pennation angle,
(4) tendon slack length, and (5) maximum shortening
velocity. Thus, for a complex musculoskeletal model with
54 muscles [30], 5 x 54 = 270 patient-specific muscle-
tendon model parameter values need to be determined,
which is an extremely challenging task. In addition, a
first order activation dynamics model, which converts a
neural control signal (i.e., electromyographic activity, or
EMG) into the activation signal input to the muscle-
tendon model, is often used and possesses additional
unknown parameter values that need to be determined
[28].

Researchers have proposed a two-phase nested
optimization method for calibrating three of the five
muscle-tendon parameter values to strength data collected
from an individual patient [31]. In phase one, joint angles
and muscle activation levels are found by maximizing
the isometric torque developed by each degree of freedom
at each joint in the model. In phase two, the unknown
muscle-tendon parameter values are found by matching
the joint torque profile of the model to that measured for
the patient using isometric dynamometer tests. Within
each phase, peak isometric force is calculated as the ratio
of measured muscle volume to estimated optimal muscle
fiber length. The calculated values of peak isometric
force, optimum muscle fiber length, and tendon rest
length are often evaluated qualitatively by comparison
with published values from anatomic studies. Values of
the two remaining parameters are normally taken from
the literature [29].

For EMG-driven muscle-tendon models, researchers
have proposed a different optimization method that uses
functional data to calibrate the same three muscle-tendon
parameter values along with parameter values related to
activation dynamics (i.e., EMG-to-activation
characteristics) [28, 32, 33]. These models utilize
experimentally measured EMG signals as inputs. Rather
than matching just the isometric joint torque profiles of
the patient, this method matches the patient’s functional,
isokinetic, and isometric joint torque profiles [34, 35]. A

variety of movement trials are used to cover a range of
contractile conditions of the patient’s muscles, including
the functional activity to be simulated (e.g., gait) and
passive, maximal effort, and submaximal effort eccentric
and concentric trials on an isokinetic dynamometer. An
optimization problem is solved to adjust the muscle-
tendon and activation dynamics parameter values for each
muscle to match the joint torques measured from the
different movement trials [35]. Once the model is
calibrated, it can be used to predict joint torques (and
hence the extent of muscle co-contraction) during other
tasks for which EMG data are available from the patient
[34, 36].

2.3. Patient-specific Neural Control Models

For applications where prediction of individual muscle
forces is necessary, a neural control model is needed.
Since there are more unknown muscle forces than degrees
of freedom in the skeletal model, prediction of muscle
forces for experimental or simulated motions is an
indeterminate problem [37]. The most common neural
control models used to predict muscle forces fall into
two categories: (1) optimization methods and (2) EMG-
driven methods. A third category called reduction
methods eliminate unknown muscle forces until the
number of muscle forces to be found equals the number
of equations available from inverse dynamics [38], but
these methods ignore the fact that muscle co-contraction
occurs in real life.

Optimization methods assume that the neural control
system minimizes some cost function (e.g., sum of
squares of muscle activations [37, 39]) when producing
human movement. The cost function makes the solution
unique and makes up for missing equations.
Optimizations methods themselves can be divided into
two sub-categories: inverse dynamic (often called
“static”) and forward dynamic (often called “dynamic”)
optimization [40]. Static optimization requires
experimental motion (and ideally external load) inputs
and solves the dynamics equations algebraically for the
net forces and torques at the joints (i.e., inverse
dynamics). Muscle forces consistent with these net joint
loads are then predicted by solving a separate
optimization problem for each time frame of the motion.
In contrast, dynamic optimization does not require
experimental motion or load inputs and solves the
dynamics equations via numerical integration for the
motion produced by the muscle forces (i.e., forward
dynamics). Muscle forces and associated motion are
predicted by solving a single optimization problem over
all times frames simultaneously. The problems with
optimization methods are first, that the “correct” form of
the cost function being minimized by the neural control
system is unknown [41], second, that the weight factors
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on the individual terms in the cost function are unknown
[42, 43], and third, that the optimality assumption of the
neural control system may not apply to neurologically
impaired individuals (e.g., cerebral palsy and stroke) [44].

EMG-driven methods avoid these problems by using
muscle EMG measurements as additional experimental
inputs [28, 32, 34, 35, 45]. Similar to static optimization,
these methods require experimental motion inputs, and
similar to dynamic optimization, they can predict net joint
loads for quantitative evaluation. The two primary
drawbacks of EMG-driven methods are first, that it is
unclear how to incorporate deep muscles for which EMG
measurements cannot be made, and second, that muscle
force predictions cannot be made if experimental EMG
and motion measurements are not available. The main
strength of EMG-driven methods is that they apply
equally well to normal and neurologically impaired
individuals, since they utilize a patient-specific neural
control strategy by design. Furthermore, once the method
is calibrated to a set of functional, isokinetic, and
isometric trials, the predictions can be tested
quantitatively by predicting net joint loads for other trials
not used in the calibration process [34, 36].

To address the issue of unknown weight factors in
optimization methods, recent studies have investigated
identification of patient-specific cost functions [5, 42, 43].
With this approach, the form of the cost function must
be pre-supposed, but the weights on the various terms in
the cost function are identified on a patient-specific basis.
Conceptually, a two-level optimization problem is
formulated. The outer level minimizes a cost function
that tracks some combination of experimental
measurements by varying design variables that define the
weight factors in the inner-level cost function. The inner
level minimizes a cost function that uses the current
weight factors specified by the outer level by varying
design variables related to the muscle activations, joint
moments, joint motions, and/or applied loads (e.g.,
ground reactions). The two levels are iterated until the
inner level optimization predicts a solution that matches
the experimental data being tracked at the outer level as
closely as possible. In essence, this approach yields an
inner level optimization result that closely reproduces the
experimental data without tracking it directly. Though
this approach has promise for patient-specific clinical
applications, it has yet to be investigated extensively.

A simpler neural control model assumes “minimum
control change” between the patient’s pre-treatment
motion and his or her post-treatment motion [5, 43, 46,
47]. The underlying assumption is that the patient’s neural
control strategy after treatment will be similar to his or
her neural control strategy before treatment. This concept
eliminates the need to determine what (if anything) the
patient’s neural control system is minimizing and instead

seeks a “neighboring solution” to the patient’s existing
motion and control. An advantage of this approach is that
it allows optimization methods to be applied to patients
who are neurologically impaired, since no assumptions
are required about the quantities being minimized in an
absolute sense.

2.4. Patient-specific Joint Contact Models

For some clinical applications, such as those related to
osteoarthritis or joint replacement wear, patient-specific
articular contact models may be necessary. Historically,
computational cost has limited the feasibility of
incorporating such models into a larger multibody
dynamic skeletal model. For forward dynamic and static
simulations, elastic foundation contact models (i.e., bed-
of-springs models) require significantly less computation
time than do finite element contact models (i.e., minutes
compared to hours or days [48]). Nonetheless, even
minutes of CPU time is prohibitive for applications that
require thousands of repeated simulations, such as
optimizations that predict muscle forces and movement
simultaneously.

One alternative to an elastic foundation or finite
element contact model is a surrogate contact model [49-
51]. A surrogate model is a computationally cheap model
that reproduces the input-output characteristics of a
computationally expensive model. Surrogate model
development involves four steps: (1) design of
experiments, (2) computational experiments,
(3) surrogate model selection, and (4) surrogate model
evaluation [52]. Design of experiments defines
combinations of inputs (i.e., sample points) that cover
the allowable range, computational experiments calculate
the outputs from the computationally expensive model
for each sample point input, surrogate model selection
determines the process for fitting the input-output
relationships, and surrogate model evaluation quantifies
how well the final surrogate model matches the input-
output relationships of the original model for sample
points not used in the fitting process.

Though these steps apply to the creation of any
surrogate model, development of surrogate contact
models poses unique challenges. For an elastic contact
model, inputs are the position (3 translations) and
orientation (3 rotations) of one contacting body relative
to the other, and outputs are the net force (3 components)
and net torque (3 components) that prevent the bodies
from interpenetrating excessively. Other outputs of
interest (e.g., maximum contact pressure, wear volume)
can be fitted as well. When allowable ranges of the 6
inputs are sampled, a large number of unrealistic outputs
are generated where the bodies are either out of contact
or deeply interpenetrating. Because realistic combinations
of inputs form a thin hypervolume in 6-dimensional
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design space, special techniques are needed to generate
feasible sample points and to perform the surrogate model
fitting process [50, 51].

The computational benefits of this approach were
recently demonstrated by simulating a multibody dynamic
artificial knee model that includes both the tibiofemoral
and patellofemoral joints [51]. The sample points required
for surrogate model creation were generated by
performing repeated static analyses with an elastic
foundation contact model, and the surrogate model fitting
process was performed using Kriging [53]. Once
surrogate contact models of the tibiofemoral and
patellofemoral joints were created, they were
incorporated into a three-dimensional, 12 DOF (i.e., 6
DOFs for the tibiofemoral joint and 6 DOFs for the
patellofemoral joint) multibody dynamic model of the
artificial knee. The femoral component was fixed to
ground and the tibia and patella were allowed to move
relative to it. Knee flexion-extension was prescribed to
match a one-cycle gait motion and the remaining 11 DOFs
were numerically integrated under the influence of a
quadriceps force (3 lines of action) applied to the tibia, a
patellar ligament force (3 lines of action) applied to the
patella and tibia, and an anterior-posterior force and
internal-external rotation torque applied to the tibia. With
the elastic foundation contact model, the forward dynamic
simulation required approximately 30 minutes of CPU
time, while with the surrogate contact model, it required
only 15 seconds. Furthermore, the predicted motions and
loads were nearly identical for the two models. The
computational speed of the surrogate contact modeling
approach is more than adequate for use in biomechanical
optimizations that require repeated forward or inverse
dynamic simulations.

3. DESIGN OF PATIENT-SPECIFIC
TREATMENTS

To use patient-specific multibody dynamic models to
design clinical treatments for a neuromusculoskeletal
disorder, we require one additional piece of information
– a “clinically useful locomotion measure” [54]. Brand
defines a clinically useful locomotion measure as a
quantity that “predict[s] a different outcome than would
be predicted without the measure” or that “change[s] the
clinician’s choice of treatment.” Locomotion measures
that meet these two criteria will be highly correlated with
some direct measure of clinical outcome, such as slowing
of disease progression, decrease in pain, or increase in
function. Thus, a patient-specific multibody dynamic
model must be able to calculate or predict a clinically
useful locomotion measure for the model to have clinical
applicability.

Below we consider three illustrative examples where
a patient-specific multibody dynamic model can be used

to design clinical treatments based on knowledge of a
clinically useful locomotion measure. The first two
examples relate to knee osteoarthritis, while the third
relates to stroke.

3.1. Knee Osteoarthritis

Knee osteoarthritis (OA) affects the quality of life of
millions of patients in the United States and Europe. The
inner (or medial) side of the knee is the region most
commonly affected, often due in part to a “bow-legged”
alignment of the leg. The external knee adduction torque,
which is caused primarily by the moment of the ground
reaction force vector about the knee center, has been
identified as a “clinically useful locomotion measure” for
surgical and rehabilitation treatments of medial
compartment knee OA [55]. The peak value of this torque
during the stance phase of gait has been shown to be
highly correlated with disease progression [56, 57], pain
[58], and the long-term outcome of high tibial osteotomy
surgery [59, 60]. Ideally, patient-specific multibody
dynamic models could be used to design patient-specific
gait modifications or leg alignment corrections to reduce
the external knee adduction torque in an optimal fashion.

Optimization of a patient-specific multibody dynamic
model was recently used successfully to design a
customized rehabilitation treatment for a specific patient
with medial compartment knee OA [46]. Walking data
collected from the patient were used to construct a full-
body, patient-specific multibody dynamic model. Joint
and inertial parameter values in the model were calibrated
to the patient’s walking and isolated joint motion data.
An inverse dynamics optimization problem was
formulated to predict a new walking motion that
minimized both knee adduction torque peaks, was similar
to the patient’s normal walking motion, and satisfied a
minimal control torque change criteria. The optimization
predicted a “medial thrust” gait motion that brought each
knee toward the midline of the body during stance phase,
thereby reducing the knee adduction torque by 30 to 40%,
a clinically significant amount. The kinematic changes
predicted by the optimization were implemented by the
patient, who achieved comparable reductions when
measured in the gait lab [46]. For this particular
application, torque actuators were sufficient to predict a
clinically useful rehabilitation treatment. Whether a
medial thrust gait pattern will work well for other patients
is currently being investigated by research labs in the
United States and Australia [61-63].

A similar computational approach has been used to
predict the outcome of high tibial osteotomy (HTO)
surgery [5]. Given pre-surgery gait data from a patient
with medial compartment knee OA and an associated
patient-specific multibody dynamic model, the patient’s
post-surgery knee adduction torque was predicted via
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optimization for a typical range of HTO surgical
parameters. However, rather than predicting how the
patient should walk as in the gait modification example
above, this optimization predicted how the patient would
walk, which is a more difficult problem. This problem
was addressed by creating a patient-specific neural
control model in the form of calibrated weight factors in
an optimization cost function. The patient was asked to
perform different walking motions that modified the
external knee adduction torque. Weight factors in the cost
function were calibrated so that the optimization
accurately predicted the patient’s knee adduction torque
curve for walking with the toes pointed outward, and the
calibrated weight factors were tested using walking with
the feet wide apart. The calibrated model and cost
function were then used to predict the patient’s knee
adduction torque curve for changes in his lower leg bone
geometry produced by simulated HTO surgery. The
predicted changes were clinically realistic, though they
could not be evaluated quantitatively since the surgery
was not performed on the patient. Nonetheless, the study
demonstrated the feasibility of using a patient-specific
multibody dynamic model to predict post-surgery
functional outcomes.

3.2. Stroke

Stroke is a neurological disorder that affects the ability
to move one side of the body and hence the ability to
walk. Weakness of the muscles in the affected leg and
spasticity of the ankle extensor muscles often hinder
support during stance phase, propulsion during toe off,
and foot clearance during swing phase [64-67]. The ankle
flexion-extension torque during gait has been identified
as a “clinically useful locomotion measure” for
developing stroke rehabilitation treatments.
Abnormalities in this torque have been shown to be
negatively correlated with walking speed and the ability
to ambulate independently in the community [64, 67, 68].
Since muscle forces can only be increased and not
decreased through external means (e.g., functional
electrical stimulation), patient-specific multibody
dynamic models could potentially be used to design
patient-specific ankle muscle stimulation patterns to
produce optimal correction of abnormal ankle torque
profiles, thereby improving gait speed and symmetry.

Researchers have recently initiated the development
of such an approach using patient-specific
neuromusculoskeletal models [47]. The goal is to identify
optimal patient-specific muscle stimulation patterns that
will make the ankle motion and torque profiles of stroke
patients match those of normal subjects. First, gait data
are collected from the stroke patient, and an inverse
dynamics analysis is performed to calculate his or her
ankle flexion-extension torque over the gait cycle. Next,

a patient-specific EMG-driven neuromuscular model is
constructed whose muscle-tendon and activation
dynamics parameter values are calibrated to gait and
isokinetic dynamometer data collected from the patient.
Once the EMG-driven model is able to reproduce the
patient’s measured ankle flexion-extension torque curves,
a new optimization problem is solved that seeks to match
normal ankle motion and torque profiles during gait while
minimizing activation increases in the ankle muscles.
Though the predictions have yet to be tested in actual
patients, the approach provides a well-defined path for
implementing the predicted patient-specific activation
increases via functional electrical stimulation [69] and
evaluating whether they result in clinically significant
increases in gait speed and symmetry on a patient-specific
basis.

4. CHALLENGES TO PATIENT-SPECIFIC
ADVANCES

A number of practical challenges need to be overcome
before patient-specific multibody dynamic models
achieve widespread clinic application. One of the primary
challenges is development of methodologies that can
accurately calibrate model parameter values to data
collected from individual patients. Skeletal model
parameter values can already be calibrated to a patient’s
movement data with reasonable accuracy [4-6, 9, 10].
Nonetheless, further evaluation of joint parameter
estimates [70] and improvement of inertial parameter
estimates for “fast” movements would be valuable [71].
Muscle-tendon model parameter values remain
challenging to calibrate, as current methods can fit
experimental joint torque measurements but do not
guarantee that the resulting parameter values are correct.
Though MR data can be used to calibrate muscle moment
arm parameter values [72], an automated approach is
needed for converting imaging data to parameterized
models. Calibration of neural control model parameter
values for optimization-based muscle force predictions
will likely require significant research effort to identify
appropriate cost function forms. Joint contact model
articular geometry for individual patients can be obtained
from MR data, but parameter values related to tissue
material properties and adaptation over time require
development of new measurements and calibration
methods.

A related challenge is development of sensitivity
analyses to determinate which model parameters should
be calibrated accurately to predict treatment outcome
reliably. Due to the complexity of many
neuromusculoskeletal models, it is often difficult to
perform a sensitivity analysis of how the clinically useful
locomotion measure predicted by the model is influenced
by errors in model parameter values. For the knee
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osteoarthritis applications described above, Monte Carlo
analysis revealed that the external knee adduction torque
was sensitive to errors in joint parameter values, which
could be calibrated accurately from experimental data,
but not to errors in inertial parameter values, which could
not be calibrated accurately [5]. For clinical applications
that require estimation of individual muscle forces, few
sensitivity analyses have been performed of how muscle-
tendon model parameter values affect the predicted
outputs of interest [73-75]. Computationally efficient
methods for performing sensitivity analyses, such as the
advanced mean value method [76], may prove useful in
this regard.

Validation of patient-specific model predictions is
another critical challenge. Muscle force predictions in
particular are difficult to validate, since direct
measurement of muscle forces during human movement
is possible only under special circumstances [77-81].
Most often, predicted muscle forces are evaluated only
qualitatively by comparing predicted and measured
muscle activation patterns [26, 30, 82]. Quantitative
evaluations have been performed by comparing predicted
and measured joint contact forces, as correctly predicted
contact forces are a necessary (but not sufficient)
condition for correctly predicted muscle forces. Such
evaluations have worked well for the hip [83], and a
recent evaluation for the knee shows promise [84]. More
extensive quantitative evaluation using instrumented
implant data collected under a wide variety of movement
conditions could play a valuable role in the validation
process.

Yet another challenge is determination of the
appropriate level of patient-specific model complexity
for any given clinical application. A prime example is
whether patient-specific joint contact models are needed
to predict accurate muscle forces. While patient-specific
articular geometry is probably not critical for a
geometrically simple joint such as the hip, it is likely to
be critical for the complex geometry of the knee, as
evidence exists that an overly simplistic model of a
complex joint leads to incorrect prediction of muscle
forces [85]. Current methods of predicting muscle forces
across the knee do not utilize contact models and typically
match only the flexion-extension torque, thereby utilizing
only one of the six available inverse dynamic loads at
the knee. This load is chosen since it is the only one where
it seems justifiable to assume that contact forces do not
contribute significantly (though the validity of this
assumption has not been evaluated). Inclusion of contact
forces in the muscle force prediction process would allow
the other five inverse dynamics loads to be used as
constraints as well, reducing the level of indeterminacy
in the solution process. The high computational cost of
contact problems has prevented the development of

methods that solve for muscle and contact forces
simultaneously, and surrogate contact models may
provide a solution to this dilemma. Advances in
fluoroscopic imaging of natural and artificial joints may
also be critical for providing accurate bone or implant
motion inputs [86-92].

A final challenge is identification of “clinically useful
locomotion measures” as defined by Brand [54].
Multibody dynamic neuromusculoskeletal models can
only be used for clinical treatment planning when the
model is able to predict a clinically useful locomotion
measure. For the vast majority of clinical applications,
such measures have yet to be identified. Determination
of such measures is an important research area where
collaborative efforts between engineers and clinicians
have the potential to make a significant clinical impact
in the future.
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