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Stroke is a leading cause of long-term disability worldwide and often impairs walking

ability. To improve recovery of walking function post-stroke, researchers have investigated

the use of treatments such as fast functional electrical stimulation (FastFES). During

FastFES treatments, individuals post-stroke walk on a treadmill at their fastest

comfortable speed while electrical stimulation is delivered to two muscles of the

paretic ankle, ideally to improve paretic leg propulsion and toe clearance. However,

muscle selection and stimulation timing are currently standardized based on clinical

intuition and a one-size-fits-all approach, which may explain in part why some patients

respond to FastFES training while others do not. This study explores how personalized

neuromusculoskeletal models could potentially be used to enable individual-specific

selection of target muscles and stimulation timing to address unique functional limitations

of individual patients post-stroke. Treadmill gait data, including EMG, surface marker

positions, and ground reactions, were collected from an individual post-stroke who was

a non-responder to FastFES treatment. The patient’s gait data were used to personalize

key aspects of a full-body neuromusculoskeletal walking model, including lower-body

joint functional axes, lower-body muscle force generating properties, deformable

foot-ground contact properties, and paretic and non-paretic leg neural control properties.

The personalized model was utilized within a direct collocation optimal control framework

to reproduce the patient’s unstimulated treadmill gait data (verification problem) and

to generate three stimulated walking predictions that sought to minimize inter-limb

propulsive force asymmetry (prediction problems). The three predictions used: (1)

Standard muscle selection (gastrocnemius and tibialis anterior) with standard stimulation

timing, (2) Standard muscle selection with optimized stimulation timing, and (3) Optimized

muscle selection (soleus and semimembranosus) with optimized stimulation timing.

Relative to unstimulated walking, the optimal control problems predicted a 41% reduction

in propulsive force asymmetry for scenario (1), a 45% reduction for scenario (2), and a

64% reduction for scenario (3), suggesting that non-standard muscle selection may be
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superior for this patient. Despite these predicted improvements, kinematic symmetry was

not noticeably improved for any of the walking predictions. These results suggest that

personalized neuromusculoskeletal models may be able to predict personalized FastFES

training prescriptions that could improve propulsive force symmetry, though inclusion of

kinematic requirements would be necessary to improve kinematic symmetry as well.

Keywords: fast treadmill training, functional electrical stimulation, neuromusculoskeletal modeling, computational

modeling, direct collocation optimal control, paretic propulsion, stroke, muscle synergies

INTRODUCTION

Approximately 15 million people experience a stroke each year
(MacKay and Mensah, 2004), with walking dysfunction being
one of the most common sequelae (Lloyd-Jones et al., 2010;
Verma et al., 2012). Stroke-related walking disability has been
associated with a host of co-morbidities including hypertension,
heart disease, diabetes, and cognitive decline (Ostwald et al.,
2006; Abellan van Kan et al., 2009; Mutikainen et al., 2011;
Ostir et al., 2013; Garcia-Pinillos et al., 2016; Rosso et al., 2017;
Savica et al., 2017) resulting in a decreased quality of life and
increased risk of death (Nor Azlin et al., 2016). While stroke
rehabilitation treatments often restore some level of walking
function (Balaban et al., 2011), they rarely restore walking
ability to a pre-stroke level (Bogey and Hornby, 2007). Stroke-
induced walking deficits primarily affect one side of the body,
resulting in a slow and asymmetric gait pattern (Verma et al.,
2012) characterized by neural control changes (Lamontagne
et al., 2007) and compensatory motion patterns. For example,
post-stroke gait is often characterized by reduced paretic leg
propulsion during stance phase (McGinley et al., 2006) and
decreased paretic leg toe clearance from the ground during swing
phase (Verma et al., 2012). These changes lead to inefficient
compensatory strategies such as increased propulsive force
generation on the non-paretic side and hip hiking to facilitate toe
clearance on the paretic side.

Fast-speed treadmill training with functional electrical
stimulation (FastFES) is a promising treatment for improving
walking ability post-stroke. However, little data currently exist
for determining the best way to customize the treatment
to individual-specific gait deficits. The rationale for FastFES
training is that fast speed walking by itself can improve gait
biomechanics in individuals post-stroke, while task-specific
electrical stimulation of selected muscles can provide feedback to
the nervous system to promote motor learning of the appropriate
timing and activation of the stimulated muscles (Kesar et al.,
2011; Awad et al., 2014, 2016). The FastFES intervention has
been shown to improve gait function and energy cost of gait
in individuals with chronic post-stroke hemiparesis (Awad
et al., 2014, 2016). This combination may help the damaged
central nervous system adapt favorably to the new post-stroke
reality. However, selection of muscles to stimulate, along with
stimulation timing and amplitude, are currently standardized
based on the normal activation profile of muscles during
gait, clinical intuition, and the subject’s tolerance to electrical
stimulation. Furthermore, during FastFES, only two muscles

are typically targeted for stimulation—tibialis anterior and
gastrocnemius—due to technical limitations. Tibialis anterior is
stimulated to improve paretic toe clearance during swing phase,
and gastrocnemius is stimulated to improve paretic propulsion at
the end of stance phase (Allen et al., 2018). Timing patterns of the
stimulation are usually constrained to simple on/off cycles based
on foot switch signals.

Though stroke affects each patient’s neural control capabilities
differently, current standardized FastFES treatment does not
account for this reality. Patient specific coordination deficits
suggest the need for patient-specific treatment prescriptions
(Allen et al., 2018). Inter-individual variability in post-stroke
sensorimotor impairments may explain why some patients
respond to standardized treatment while others do not.
Non-responders could potentially experience greater treatment
efficacy if different muscles were stimulated, or if the standard
muscles were stimulated with different timing. However, no
method currently exists for predicting a prioriwhich twomuscles
are the best targets for stimulation, and how they should be
stimulated, to achieve the maximal improvement in walking
function for any particular patient.

An emerging approach for addressing the treatment
personalization problem is personalized neuromusculoskeletal
modeling. If key parameter values in a neuromusculoskeletal
model are personalized to the unique anatomical, physiological,
and neurological characteristics of a specific patient, then the
resulting personalized model could potentially be used to predict
and even optimize an individual patient’s functional outcome for
different treatment scenarios under consideration (Fregly et al.,
2012; Meyer et al., 2016). Several modeling studies have already
analyzed or optimized various aspects of muscle electrical
stimulation, including electrode shape in epiretinal stimulation
(Cao et al., 2015), stimulation site selection for hand opening (De
Marchis et al., 2016), stimulation pulse duration and polarity for
de-enervated muscles (Pieber et al., 2015), stimulation profiles
and lower limb trajectories to improve FES- and orthosis-based
walking (Sharma et al., 2014), and stimulation timing for foot
drop correction (Azevedo Coste et al., 2014). However, no
study to date has used a personalized neuromusculoskeletal
model to design a personalized FastFES treatment tailored to the
functional limitations of a specific individual post-stroke.

This study evaluates the feasibility of designing a
personalized FastFES treatment protocol using a personalized
neuromusculoskeletal model coupled with direct collocation
optimal control. The subject studied was a non-responder to the
standard FastFES treatment protocol (Allen et al., 2018), making
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him an excellent candidate for computational exploration
of alternative muscle stimulation protocols that theoretically
could improve his treatment outcome. The treatment design
problem was framed as a direct collocation optimal control
problem that minimized propulsive force asymmetry between
the two legs while making minimal changes to the subject’s non-
stimulated neural control strategy, which was modeled using
subject-specific muscle synergies. Propulsive force symmetry
was targeted for improvement since recent studies have shown
that it is an important determinant of walking ability (Bowden
et al., 2006; Schmid et al., 2007). The computational treatment
design process involved personalizing key parameters in a
full-body neuromusculoskeletal walking model to treadmill
walking data collected from the subject, and then using the
personalized model to solve a sequence of direct collocation
optimal control problems. An initial optimal control problem
verified that the personalized model could be used to predict
the subject’s unstimulated muscle activations, joint kinematics,
and ground reactions. The remaining optimal control problems
predicted how the subject would walk when two paretic leg
muscles were stimulated in three ways: (1) Standard muscle
selection with standard stimulation timing, (2) Standard muscle
selection with optimized stimulation timing, and (3) Optimized
muscle selection with optimized stimulation timing. The
results demonstrate the feasibility of using this computational
treatment design approach for identifying new avenues of
clinical exploration.

MATERIALS AND METHODS

Experimental Data Collection
We collected treadmill gait data from an individual post-stroke
(age >70 years, ∼8 years after stroke) who was a non-responder
to the standard FastFES treatment protocol. The subject gave
written informed consent, and the study was approved by
the institutional review boards of Emory University and the
University of Florida. Collected data included full-body video
motion capture data (Vicon, Centennial, CO, USA), bilateral
force plate data from a split-belt instrumented treadmill with
belts tied (Bertec Corporation, Columbus, OH,USA), and surface
EMG data from 14 muscles per leg (Table 1; 28 total signals)
(Konigsberg Instruments, Pasadena, CA, USA). The subject had
a slow self-selected walking speed of 0.3 m/s and a visually
asymmetric gait pattern, with the paretic right leg exhibiting
stereotypical hip hiking. The same subject was participant NR1
in a recently published FastFES clinical study (Allen et al.,
2018), although the data used in the present study (which were
much more extensive) were collected more than a year after
completion of the clinical study. Notes taken during the clinical
study indicated that further investigation into the causes of non-
response and corresponding alterations to treatment design were
needed for this subject.

Experimental data were collected for several types of trials.
Static trial data were collected in which the subject stood upright
with an anatomically neutral joint alignment for several seconds
with feet pointing forward. Data from this static trial were
used for scaling an initial generic musculoskeletal model and

TABLE 1 | List of muscles present in each leg of the neuromusculoskeletal model,

including muscles with measured EMG signals (Measured), muscles whose EMG

signals were copied from neighboring muscles with similar anatomical function

(Copied), and muscles whose EMG signals were predicted using synergy signals

extracted from measured EMG signals (Predicted).

Muscle Abbreviation Measured Copied Predicted

Adductor brevis AddBrev X

Adductor longus AddLong X

Adductor magnus (Distal) AddMagDist X

Adductor magnus (Ischial) AddMagIsch X

Adductor magnus (Mid) AddMagMid X

Adductor magnus (Proximal) AddMagProx X

Gluteus maximus 1 GlutMax1 X

Gluteus maximus 2 GlutMax2 X

Gluteus maximus 3 GlutMax3 X

Gluteus medius 1 GlutMed1 X

Gluteus medius 2 GlutMed2 X

Gluteus medius 3 GlutMed3 X

Gluteus minimus 1 GlutMin1 X

Gluteus minimus 2 GlutMin2 X

Gluteus minimus 3 GlutMin3 X

Tensor fasciae latae TFL X

Semimembranosus Semimem X

Semitendinosus Semiten X

Biceps femoris long head BifemLH X

Biceps femoris short head BifemSH X

Rectus femoris RecFem X

Vastus medialis VasMed X

Vastus lateralis VasLat X

Vastus intermedius VasInt X

Gastrocnemius lateralis GasLat X

Gastrocnemius medialis GasMed X

Tibialis anterior TibAnt X

Peroneus brevis PerBrev X

Peroneus longus PerLong X

Peroneus tertius PerTert X

Soleus Sol X

Iliopsoas IP X

Tibialis posterior TibPost X

Extensor digitorum longus EDL X

Flexor digitorum longus FDL X

determining the locations of reflective surface markers on the
model (see below). Six different isolated joint motion trials were
performed to facilitate calibration of lower-body joint positions
and orientations in the body segments. One isolated joint motion
trial was performed for each hip, knee, and ankle, where each
trial exercised all functional axes for the selected joint (Reinbolt
et al., 2005, 2008). Gait trials were performed at the subject’s
fastest comfortable walking speed of 0.6 m/s without FES, which
was the speed used for the subject’s previous FastFES training.
To help maintain balance during the treadmill gait trials, the
subject rested his hands on a handlebar suspended from the
ceiling. One representative gait trial was selected for subsequent
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computational modeling and optimization efforts. The selection
process involved identifying gait cycles with clean surfacemarker,
ground reaction, and EMG data, eliminating cycles near the start
and end of the trial where transient conditions were present, and
finally determining the one gait cycle whose period was closest to
the mean.

Computational Model Personalization
We personalized a generic full-body musculoskeletal model
(Hamner et al., 2010) developed in OpenSim (Delp et al., 2007;
Seth et al., 2018) to the unique anatomical, physiological, and
neurological characteristics of the subject using the subject’s
experimental movement data. The generic model possessed 44
lower-body muscles, of which 36 were retained, and 37 degrees-
of-freedom (DOFs), including three DOF hip joints, one DOF
knee joints, and two DOF ankle joints. As a preliminary task, the
generic OpenSim model was scaled to the subject’s dimensions
using surface marker data from the static trial and OpenSim’s
Scale Model tool. Three mutually perpendicular forces and
moments were added to each hand in the model to account
for the subject’s hands resting on a handlebar. In addition, a
backpack was added to the torso of themodel to account for EMG
system hardware. Muscles controlled the hips, knees, and ankles
of themodel, while net torque actuators controlled the lower back
joint and the two shoulder, elbow, and toes joints. Activation
dynamics, Hill-type muscle models with rigid tendons (De
Groote et al., 2016), surrogate musculoskeletal geometry models,
and deformable foot-ground contact models were implemented
in Matlab (the Mathworks, Natick, MA, USA) for use within the
OpenSim skeletal model.

As described briefly below, model personalization involved a
four-step calibration process performed in Matlab with calls to
OpenSim analyses throughMatlabMex functions and OpenSim’s
C++ API. Traditional optimization problems used to calibrate
model parameter values were solved with either the “lsqnonlin”
or “fmincon” optimizer in Matlab, while direct collocation
optimal control problems used to calibrate model parameter
values and controls and to predict new gait motions were solved
with GPOPS-II optimal control software for Matlab (Patterson
and Rao, 2014) using the IPOPT optimizer (Wächter and Biegler,
2006). The four steps in the model personalization process were
similar to the ones presented in a recent study (Meyer et al.,
2016), which provides further details on the process.

Joint Model Personalization
The first step involved personalization of the model’s lower-body
functional axes using data from the isolated joint motion trials
and selected gait trial combined with repeated OpenSim “Inverse
Kinematics” analyses. Only pelvis and lower bodymarker motion
data were needed for this step.

To perform this model personalization step, we formulated
an optimization problem that sought to calibrate parameters
defining the positions and orientations of the lower body joints
(hips, knees, and ankles) in their respective body segments
as well as parameters defining the positions and orientations
of marker triads placed on the pelvis, thighs, shanks, and
feet of the model. The cost function minimized the sum of

squares of errors between experimental and model-predicted
marker positions using all motion trials together. Each function
evaluation performed an OpenSim “Inverse Kinematics” analysis
to calculate the current marker location errors. Matlab’s
“lsqnonlin” non-linear least squares algorithm was used to
perform the optimization. The calibrated joint and marker triad
positions and orientations were applied to the model and used in
a final OpenSim “Inverse Kinematics” analysis to determine joint
position, velocity, and acceleration time histories for subsequent
steps of the model personalization process.

Muscle-Tendon Model Personalization
The second step involved personalization of the model’s EMG-
driven muscle-tendon force and moment generating properties
using data from 40 gait cycles and OpenSim “Inverse Dynamics”
and “Muscle” analyses. The data needed for this step included
joint kinematics found as in the first step along with ground
reaction and EMG data. Three tasks were performed in
preparation for this model personalization step. First, EMG
data from 40 gait cycles were processed (high-pass filtered,
demeaned, rectified, and low-pass filtered) as described in
Meyer et al. (2016), resulting in envelopes of muscle excitation.
Second, an OpenSim “Inverse Dynamics” analysis was performed
to calculate the net hip, knee, and ankle joint moments to
be matched by muscle forces estimated by this step of the
model personalization process. Third, an OpenSim “Muscle”
analysis was performed repeatedly to calculate muscle-tendon
lengths and moment arms for each muscle over a wide range
of sampled combinations of lower-body joint positions. The
sampled quantities were fitted simultaneously as polynomial
functions of joint positions as described in Meyer et al. (2016),
thereby producing surrogate representations of the subject’s
musculoskeletal geometry for rapid calculation of muscle-tendon
lengths, velocities, and moment arms.

Once these preparatory tasks were completed, we formulated
an optimization problem that sought to calibrate Hill-type
muscle-tendon model parameters (scale factors for EMG
normalization, electromechanical delays, activation dynamics
time constants, activation non-linearization shape factors,
optimal muscle fiber lengths, and tendon slack lengths)
along with parameters defining the surrogate musculoskeletal
geometry. The cost function minimized the weighted sum of
squares of errors between three types of lower-body quantities:
(1) inverse dynamic and model-predicted total joint moments,
(2) published experimentally measured (Silder et al., 2007) and
model-predicted passive joint moments, and (3) initial and
current model parameter values as regularization terms (i.e.,
terms that minimized changes in parameter values away from
their initial guesses to make the optimal solution unique).
Joint moment errors were calculated for hip flexion-extension
and adduction-abduction, knee flexion-extension, and ankle
plantarflexion-dorsiflexion and inversion-eversion. Twice as
much weight was placed on hip moment errors as on knee
and ankle moment errors to produce comparable magnitude
errors at all three joints. No OpenSim analyses were needed
for function evaluations. Matlab’s “fmincon” sequential quadratic
programming algorithm was used to perform the optimization.
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The calibrated muscle activations were required for the final step
of the model personalization process.

Because fine-wire EMG data were not available for important
deep muscles (i.e., iliopsoas, tibialis posterior, extensor digitorum
longus, and flexor digitorum longus), we incorporated muscle
synergy techniques into the optimization process to estimate the
activations for the 4 muscles in each leg with missing EMG
signals (Bianco et al., 2017). Synergy analysis of the subject’s
muscle activations revealed that only 2 or 3 synergies (depending
on normalization method) were needed to achieve 95% total
VAF for each leg. However, since our muscle synergies were
not simply fitting EMG data but rather making the subject’s
personalizedmodel walk in a dynamically consistent manner that
closely matched all available experimental data, we wanted all
muscle activations in the model to be reconstructed with at least
95% VAF. Consequently, we chose to control each leg with 5
synergies, which was the number required to surpass the 95%
individual muscle VAF threshold and ensure enough flexibility
for constructing the shapes of the missing muscle activations.

Once the number of synergies was selected, we used
muscle synergy concepts to extend our EMG-driven model
personalization process (Meyer et al., 2017) to the case where 4
important muscles per leg hadmissing EMG signals. The original
personalization process was developed using a full set of EMG
signals, where every muscle in the lower body model had either
a measured EMG signal or an EMG signal that could be copied
from a neighboring muscle with similar anatomical function
(e.g., the semimembranosus EMG signal was copied from the
semitendinosus EMG signal). Thus, no EMG signals needed to
be predicted. To accommodate missing EMG signals, we added
two new steps to the personalization process immediately after
activation dynamics (Figure 1). The first new step performed
muscle synergy analysis via non-negative matrix factorization
(Lee and Seung, 1999; Tresch et al., 1999; Ting and Chvatal,
2010) on the 14 muscle activations per leg with associated
measured EMG signals. This step produced 5 time-varying
synergy activations that were assumed to apply to the 4 muscles
with missing EMG signals (Bianco et al., 2017). The second new
step performed muscle synergy reconstruction by multiplying
the 5 time-varying synergy activations extracted in the previous
step with the optimization’s current guess for the 5 synergies
× 4 unknown synergy vector weights/synergy = 20 synergy
vector weights per leg for muscles with missing EMG signals.
These synergy vector weights were new parameters added to the
optimization problem formulation. The second step yielded 4
predicted muscle activations consistent with the optimization’s
current guess for excitation scale factors, activation parameters,
and synergy vector weights for predicted muscles. The 4 muscle
activations predicted for each leg were used in the current
optimization iteration and updated in future iterations based on
the latest values of the optimization parameters.

Ground Contact Model Personalization
The third step involved personalization of the model’s foot-
ground contact properties using data from the selected gait
trial combined with repeated OpenSim “Point Kinematics” and
“Inverse Dynamics” analyses. The data needed for this step

included inverse dynamic joint moments found in the second
step along with marker motion and ground reaction data.
Compressive non-linear spring-dampers were distributed over
a rectangular grid on the bottom of each two-segment foot
model (Neptune et al., 2000). Overall grid dimensions were
defined using a foot outline generated with a marker pointer
(Jackson et al., 2016). Contact elements whose center points were
inside the foot outline were retained, while those whose center
points were outside of the foot outline were discarded. Contact
elements were split between the rear foot and toes segments
according to the segment in which they resided. The normal
force generated by each contact element was a function of the
element’s penetration and penetration rate into the floor, while
the frictional force generated by each contact element was a
function of the element’s normal force and slip velocity relative
to the floor (Meyer et al., 2016).

To perform this model personalization step, we formulated
a direct collocation optimal control problem that sought
to calibrate parameters defining the stiffness, damping, and
frictional properties of the non-linear spring-dampers on the
bottom of each foot (Table 2, Model Personalization Problem 1.1;
Meyer et al., 2016). The cost function minimized the weighted
sum of squares of errors between four types of quantities:
(1) experimental and model-predicted marker positions, (2)
experimental and model-predicted ground reaction forces and
moments, (3) lower-body inverse dynamic and model-predicted
joint moments (no muscles were used in this step), and (4)
inverse kinematic and model-predicted toe joint angles. The last
term was included since a small error in toe marker position
could produce a large change in ground reactions, making
the foot-ground contact model calibration process much more
difficult. Three mutually perpendicular forces and moments were
applied to each hand to approximate the loads applied to the
hands by the handlebar. Path constraints were used to ensure
that the full-body skeletal dynamic equations were satisfied to
within the specified tolerance of 1e-6. Each function evaluation
performedOpenSim “Point Kinematics” and “Inverse Dynamics”
analyses to calculate the current errors in ground reactions,
marker positions, and joint moments (cost function) and in
skeletal dynamics (constraints). Since skeletal dynamics were
evaluated in an inverse rather than forward sense, we added
joint jerk controls to the problem formulation to provide explicit
forward dynamic equations (e.g., joint jerk is the first time
derivative of joint acceleration, etc.) as required by GPOPS-II.
Thus, the state vector consisted of joint positions, joint velocities,
and joint accelerations.

Using the model with calibrated foot-ground contact
parameter values, we solved a subsequent direct collocation
optimal control problem to generate a dynamically consistent
walking motion that closely tracked experimental marker,
ground reaction, and inverse dynamic joint moment data
(Table 2, Model Personalization Problem 1.2). The problem
formulation was identical to the previous one except that
foot-ground contact model parameter values were fixed to their
calibrated values, minimization of joint jerk controls and the
three mutually perpendicular forces and moments applied to
each hand were added to the cost function, and bounds were
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FIGURE 1 | Flowchart showing modifications to the original EMG-driven model personalization process to accommodate muscles with missing EMG signals. Two

new steps—“Muscle synergy analysis” and “Muscle synergy reconstruction”—were added to the existing process to predict missing muscle activations whose shapes

were consistent with synergy activations extracted from muscles with measured EMG signals.
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TABLE 2 | Overview of direct collocation optimal control problem formulations for the neuromusculoskeletal model personalization and FastFES treatment optimization

process.

Cost function Constraints Controls Static

parameters

1 MODEL PERSONALIZATION

1.1 Calibrate foot-ground contact

model to reproduce experimental data

Track experimental marker, ground

reaction, joint moment, and toe angle

data

Satisfy skeletal dynamics Joint jerk; hand

loads

Foot-ground

contact model

parameters

1.2 Generate dynamically consistent

motion using calibrated foot-ground

contact model

Track experimental marker, ground

reaction, and joint moment data;

minimize joint jerk

Satisfy skeletal dynamics; bound toe angle

error; enforce ground reaction and joint

angle periodicity

Joint jerk; hand

loads

None

1.3 Calibrate synergy vectors and

activations to reproduce experimental

motion, ground reaction, and EMG data

Track experimental joint angle, ground

reactions, joint moment, and muscle

activation data; minimize joint jerk and

hand loads

Satisfy skeletal dynamics; match OpenSim

lower body joint moments using synergy

controls; bound joint angle, ground

reaction, and hand position errors; enforce

periodicity and unit magnitude synergy

vectors

Joint jerk; hand

loads; synergy

activations

Synergy vector

weights

1.4 Verify calibrated model reproduces

experimental motion and ground

reactions without tracking any

experimental quantities

Minimize joint jerk Satisfy skeletal dynamics; match OpenSim

lower body joint moments using synergy

controls; bound hand position and synergy

activation errors; enforce periodicity

Joint jerk;

synergy

activations

None

2 TREATMENT OPTIMIZATION

2.1 Baseline—Add AP force asymmetry

minimization to verification cost function

Minimize joint jerk and AP force

asymmetry

Satisfy skeletal dynamics; match OpenSim

lower body joint moments using synergy

controls; bound hand position and synergy

activation errors; enforce periodicity

Joint jerk;

synergy

activations

None

2.2 Standard muscles/standard

timing—Add TibAnt and GasMed

stimulation with experimental timing

Minimize joint jerk and AP force

asymmetry

Satisfy skeletal dynamics; match OpenSim

lower body joint moments using synergy

controls; bound hand position, synergy

activation, and stimulation timing errors;

enforce periodicity

Joint jerk;

synergy

activations

Stimulation

amplitude and

timing

2.3 Standard muscles/optimal

timing—Use TibAnt and GasMed

stimulation with free timing

Minimize joint jerk and AP force

asymmetry

Satisfy skeletal dynamics; match OpenSim

lower body joint moments using synergy

controls; bound hand position and synergy

activation errors; enforce periodicity

Joint jerk;

synergy

activations

Stimulation

amplitude and

timing

2.4 Find optimal combination of two

stimulated muscles

Minimize joint jerk and AP force

asymmetry

Satisfy skeletal dynamics; match OpenSim

lower body joint moments using synergy

controls; bound hand position and synergy

activation errors; enforce periodicity; limit

number of stimulated muscles to two

Joint jerk;

synergy

activations

Stimulation

amplitude and

timing for all

paretic leg

muscles

2.5 Optimal muscles/optimal

timing—Find optimal stimulation of two

identified muscles

Minimize joint jerk and AP force

asymmetry

Satisfy skeletal dynamics; match OpenSim

lower body joint moments using synergy

controls; bound hand position and synergy

activation errors; enforce periodicity

Joint jerk;

synergy

activations

Stimulation

amplitude and

timing

Model personalization required solving four separate optimal control problems, while treatment optimization involved solving five separate optimal control problems, each of which used

a full-body walking model developed in OpenSim and Matlab.

placed on allowable toe angle errors and on ground reaction and
joint angle periodicity errors. The results of this problem were
used as the starting point for the final model personalization step.

Neural Control Model Personalization
The final step involved personalization of the model’s neural
control properties using data from the selected gait trial
combined with repeated OpenSim “Point Kinematics” and
“Inverse Dynamics” analyses. The data needed for this step were
the same as for the previous step except for the addition of muscle
activations produced by the second step.

To perform this final model personalization step, we
formulated a direct collocation optimal control problem that

sought to calibrate parameters defining synergy vector weights
and controls defining synergy activations (Table 2, Model
Personalization Problem 1.3). Similar to Meyer et al. (2016), five
muscle synergies were used to construct 36 muscle activations
per leg. The cost function minimized the sum of squares of
errors between four types of quantities: (1) inverse kinematic and
model-predicted joint positions, (2) experimental and model-
predicted ground reaction forces and moments, (3) lower-body
inverse dynamic and model-predicted joint moments, and (4)
EMG-driven and synergy-constructed muscle activations. The
cost function again included regularization terms that minimized
joint jerk controls and the three mutually perpendicular forces
and torques applied to each hand. Path constraints ensured
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that the full-body skeletal dynamic equations were satisfied,
lower body joint moments calculated from inverse skeletal
dynamics matched corresponding joint moments calculated
from synergy activations, and the hands remained on the
handlebars in their experimentally measured positions. Each
function evaluation performed OpenSim “Point Kinematics” and
“Inverse Dynamics” analyses to calculate the current errors in
ground reactions and joint moments (cost function) and in
skeletal dynamics and hand positions (constraints). This final
calibration optimization yielded muscle synergy controls that
closely reproduced not only the subject’s muscle activations but
also his experimental marker motion and ground reaction data
while also producing a dynamically consistent full-body walking
motion. The results of this optimization served as the starting
point for all subsequent optimal control problems that explored
different FastFES treatment scenarios.

Complete Model Verification
To gain confidence in the complete personalized model, we
solved a verification optimal control problem to demonstrate
that we could predict the subject’s unstimulated walking motion,
joint moments, ground reactions, andmuscle activations without
tracking any of these quantities in the cost function or bounding
any of these quantities in the path constraints (Table 2, Model
Personalization Problem 1.4). The problem formulation used
path constraints to bound synergy activation changes and hand
position errors and terminal constraints to enforce motion and
ground reaction periodicity. Changes in synergy activations were
limited by path constraints rather than tracking terms in the
cost function to guarantee a solution with only small changes
in synergy activations. No changes in calibrated synergy vector
weights were permitted, and applied hand forces and torques
were defined to match those found by neural control model
personalization. Thus, the only term in the cost function was
minimization of joint jerk controls. The verification problem
predicted a walking motion that essentially represented the
results of a forward dynamic simulation using the complete
personalized model.

FastFES Treatment Optimizations
We used the subject’s personalized neuromusculoskeletal
model and direct collocation optimal control to predict the
theoretically achievable improvement in anterior-posterior
(AP) force symmetry for three FastFES treatment scenarios: (1)
Standard muscle selection with standard stimulation timing,
(2) Standard muscle selection with optimized stimulation
timing, and (3) Optimized muscle selection with optimized
stimulation timing. These three treatment scenarios built
upon a baseline treatment optimization that predicted the
theoretically achievable improvement in AP force symmetry
under unstimulated conditions so that the effects of electrical
stimulation could be isolated.

Each FastFES treatment optimization built upon a baseline
treatment optimization with no electrical stimulation (see
below) by adding simulated electrical stimulation to two
selected paretic leg muscles. For each treatment optimization,
simulated electrical stimulation was added on top of the subject’s

simulated unstimulatedmuscle activations. Electrical stimulation
waveforms were assumed to be simple step functions defined
by an on-time ton, off-time toff , and amplitude A. Since our
optimal control prediction problems used controls related to
muscle activation (i.e., the output of activation dynamics) rather
than muscle excitation (i.e., the input to activation dynamics),
we developed a closed-form equation that approximated the
amplitude and shape of the activation output produced by
activation dynamics (He et al., 1991) when given a step function
excitation input:

astim(t) =
A

2

{

tanh
(

c1
(

t − ton − toffset1
))

− tanh
(

c2
(

t − toff − toffset2
))}

+
A

2

{

1− tanh
(

c2
(

t − toff − toffset2 + tend
))}

(1)

In this equation, astim(t) is the amplitude of activation produced
by electrical stimulation at the current time t, tend is the final
time of the gait cycle, and c1, c2, toffset1, and toffset2 are adjustable
parameters. For any stimulated muscle, we used non-linear least
squares optimization to calibrate the four parameters c1, c2,
toffset1, and toffset2 to match the output of the muscle’s activation
dynamics as closely as possible given a step function input of
amplitude one. Thus, given A, ton, and toff for any muscle,
Equation (1) with calibrated parameters was used to define the
muscle’s time-varying activation from electrical stimulation. The
form of Equation (1) also allows for electrical stimulation to
extend beyond the end of the gait cycle and wrap around into
the start of the same gait cycle. The total activation of a stimulated
muscle was assumed to be the sum of its activation from electrical
stimulation and its activation from muscle synergies, where the
sum was constrained to be less than one. Furthermore, the
maximum activation from electrical stimulation was bounded to
be ≤0.7 so that total activation would never exceed one.

Baseline Treatment Optimization With No Stimulation
As a starting point for treatment optimization, we formulated
and solved a baseline optimal control problem to quantify
AP force asymmetry in the absence of electrical stimulation
but with minimization of AP force asymmetry added to the
cost function (Table 2, Treatment Optimization Problem 2.1).
The optimal control problem formulation was identical to
that of the verification problem except for the addition of
a cost function term that minimized the squared difference
in AP force impulse between the two legs. The weight on
the AP force asymmetry term was chosen to be as large
as possible without visibly affecting the predicted motion.
This problem formulation allowed AP force asymmetry to
be reduced primarily through changes in initial conditions,
which were the initial positions and velocities of the
skeletal model generalized coordinates, rather than through
changes in muscle activations. The AP force asymmetry
produced by this baseline problem served as the reference
for quantifying improvements produced by the three FastFES
treatment scenarios.
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FastFES Treatment Optimization With Standard

Muscles and Standard Timing
The first treatment scenario used standard paretic leg muscle
selection—tibialis anterior (TibAnt) and medial gastrocnemius
(GasMed)—with standard stimulation timing (Table 2,
Treatment Optimization Problem 2.2). This optimal control
problem assessed how stimulation amplitude for the standard
muscles could affect propulsive force asymmetry. The main
optimization parameters were stimulation amplitude for
both muscles. Stimulation on-time ton for both muscles was
constrained to be within ±0.05 s of the standard experimental
on-time, stimulation duration was fixed to the experimental
duration, and stimulation off-time toff was set to on-time
plus duration.

FastFES Treatment Optimization With Standard

Muscles and Optimized Timing
The second FastFES treatment scenario used standard muscle
selection with optimized stimulation timing (Table 2, Treatment
Optimization Problem 2.3). This optimal control problem
assessed how altered stimulation timing for the standard
muscles could affect propulsive force asymmetry. The problem
formulation was the same as for the first FastFES treatment
scenario except that bounds on stimulation on-time were
eliminated so that stimulation amplitude, on-time, and duration
for both muscles became the main optimization parameters.

FastFES Treatment Optimization With Optimized

Muscles and Optimized Timing
The third FastFES treatment scenario used optimized muscle
selection with optimized stimulation timing. To predict the
outcome of this treatment scenario, we followed a two-step
process: First, we predicted which two muscles to stimulate,
and second, we predicted when and how much they should
be stimulated. For the first step, we solved an optimal control
problem that identified which two paretic leg muscles should
be stimulated to achieve the maximum reduction in AP force
asymmetry (Table 2, Treatment Optimization Problem 2.4).
Muscles without EMG data were not candidates for stimulation,
since their unstimulated activations were not known with
certainty. Muscles that shared EMG data between multiple heads
used shared stimulation properties, leaving 25 muscles for the
selection process. The stimulation properties of these 25 muscles
were defined by 75 adjustable parameters that accounted for
stimulation amplitude A, on-time ton, and duration, which fixed
stimulation off-time toff . A terminal constraint was added to
force the optimization to select only two muscles. Since gradient-
based optimizations require continuous functions, a continuous
approximation to the number of stimulated muscles n was
constructed as a function of the stimulation amplitude Ai of
each muscle:

n =

25
∑

i=1

(

1− e−4Ai
)

(2)

This approximation was constrained to be less than or equal to
two plus a small tolerance to account for muscles with very low
stimulation amplitude.

For the second step, we solved another optimal control
problem that optimized stimulation amplitude and timing
for these two new muscles (Table 2, Treatment Optimization
Problem 2.5). The problem formulation was identical to that
of the second FastFES treatment scenario except that the
two stimulated muscles were changed, and thus stimulation
amplitude, on-time, and duration for both muscles were again
the main optimization parameters. This optimization was
formulated to investigate whether stimulation of two different
muscles in place of the standard ones might be a better choice
for this particular patient.

RESULTS

Neuromusculoskeletal Model
Personalization
The neuromusculoskeletal model personalization process
successfully calibrated model parameter values to closely
reproduce the subject’s marker motion, joint motion, joint
moment, ground reaction, and muscle activation data.
EMG-driven joint moments from muscle-tendon model
personalization matched inverse dynamic joint moments with
root-mean-square errors (RMSE) ranging from 2.5 to 6.4Nm
and mean absolute errors (MAE) between 2.0 and 4.7Nm
(Table 3). Ground reaction forces and moments from ground
contact model personalization reproduced experimental ground
reactions with RMS errors below 2.1N for forces and 2.9Nm for
moments (Table 4). The verification optimal control problem
using the complete personalized model produced a dynamically
consistent full-body walking motion that matched lower body
inverse kinematic joint angles to within 3.2 deg RMSE and
2.2 deg MAE, lower body inverse dynamic joint moments to
within 4.8Nm RMSE and 3.4Nm MAE, measured ground
reaction forces to within 31N RMSE and 17N MAE, and
calibrated muscle activations to within 0.05 RMSE and 0.04 MAE
(Figure 2; Table 5).

FastFES Treatment Optimization
The three FastFES treatment optimizations predicted
progressively lower AP force asymmetry relative to the baseline

TABLE 3 | Root-mean-square error (RMSE), mean absolute error (MAE),

maximum absolute error (MaxAE), and range in joint moments over the gait cycle

from muscle-tendon model personalization.

Quantity Hip

extension

(Nm)

Hip

abduction

(Nm)

Knee

extension

(Nm)

Ankle

plantarflexion

(Nm)

Ankle

eversion

(Nm)

RMSE 5.37 6.19 4.90 6.36 2.54

MAE 4.16 4.69 3.81 4.62 1.98

MaxAE 21.59 30.28 21.92 42.05 12.17

Range 98.69 86.98 69.86 151.87 31.34

Errors represent the difference between inverse dynamic joint moments calculated

by OpenSim and net joint moments calculated by the calibrated EMG-driven model.

Quantities represent averages between the two legs for 80 gait cycles (40 per leg) used

in the model personalization process.
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optimization with no muscle stimulation (Table 6) along with
visible changes in muscle activation patterns relative to baseline
(Figure 3). Stimulation of standard muscles with standard
timing decreased the difference in AP force impulse between
the two legs by 41% relative to baseline, stimulation of standard
muscles with optimal timing produced a 45% decrease relative to
baseline, and stimulation of optimal muscles with optimal timing
yielded a 64% decrease. When stimulation timing was allowed
to change for standard muscle selection, TibAnt stimulation
amplitude and timing remained relatively unchanged, while
GasMed stimulation amplitude was decreased by 66% and
stimulation duration was increased by 600% to cover a much
larger portion of stance phase with greater similarity to healthy
stimulation timing (Table 7). When the two stimulated muscles
were allowed to change, the preliminary optimization selected
soleus (Sol) and semimembranosus (Semimem) as the best two
muscles to stimulate, and the subsequent treatment optimization
predicted unique stimulation timings present only during stance
phase (Table 7).

Predicted reductions in AP force asymmetry were
accompanied by notable changes in predicted propulsive as

TABLE 4 | Root-mean-square error (RMSE), mean absolute error (MAE),

maximum absolute error (MaxAE), and range in ground reaction forces and

moments over the gait cycle from foot-ground contact model personalization.

Quantity Anterior

force (N)

Superior

force (N)

Lateral

force (N)

Anterior

moment

(Nm)

Superior

moment

(Nm)

Lateral

moment

(Nm)

RMSE 1.79 2.06 1.64 2.89 0.70 2.34

MAE 1.47 1.54 1.33 2.31 0.60 1.97

MaxAE 4.77 6.22 4.21 5.78 1.29 5.65

Range 160.47 770.68 59.54 23.73 14.91 71.73

Errors represent the difference between ground reactions measured experimentally and

ground reactions calculated by calibrated two-segment foot-ground contact models.

Quantities represent averages between the two legs for representative gait cycle.

well as braking force (Figure 4; Table 8). Experimentally,
more propulsive force (positive peak and impulse) and less
braking force (negative peak and impulse) were present on
the non-paretic (left) side than on the paretic (right) side.
Each of the three FastFES treatment optimizations decreased
propulsive force and increased braking force on the non-paretic

TABLE 5 | Root-mean-square error (RMSE), mean absolute error (MAE),

maximum absolute error (MaxAE), and range in joint angles, joint

moments, ground reaction forces, and muscle activations from the verification

optimal control problem.

General quantity Specific quantity RMSE MAE MaxAE Range

Joint angles

(deg)

Hip flexion 2.3 1.8 5.2 34.0

Hip adduction 1.4 1.1 2.8 13.6

Knee flexion 3.2 2.2 8.5 65.0

Ankle dorsiflexion 1.4 0.8 4.7 26.9

Ankle inversion 1.8 1.4 4.6 15.4

Joint moments

(Nm)

Hip extension 3.5 2.8 10.2 63.8

Hip abduction 4.8 3.4 12.9 61.5

Knee extension 1.9 1.3 7.5 41.0

Ankle plantarflexion 3.8 2.2 12.4 107.0

Ankle eversion 1.4 1.0 4.4 20.1

Ground reaction

forces (N)

Normal 30.9 16.7 119.1 782.7

Propulsive 6.7 4.4 24.9 159.6

Lateral 14.1 10.3 30.8 68.9

Muscle

activations

(unitless)

Uniarticular hip 0.023 0.015 0.121 0.749

Uniarticular knee 0.033 0.025 0.112 0.440

Uniarticular ankle 0.044 0.033 0.141 0.834

Biarticular hip-knee 0.023 0.020 0.091 0.353

Biarticular knee-ankle 0.016 0.013 0.036 0.155

Errors represent the difference between quantities measured experimentally or calculated

from experimental data and quantities predicted by the verification problem. None of the

quantities included in this table was tracked in the verification cost function. Quantities

represent averages between the two legs for the representative gait cycle.

FIGURE 2 | Animation strip comparing the subject’s experimental gait motion (translucent skeleton) with his verification gait motion (opaque skeleton). The verification

gait motion was predicted by a direct collocation optimal control problem that used the subject’s personalized neuromusculoskeletal model but did not track any

experimental quantities in the cost function. This gait motion prediction was used to gain confidence in the personalized model and optimal control problem

formulation.
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side while simultaneously increasing propulsive force and
decreasing braking force on the paretic side. The one exception
was standard muscles with optimal timing, which predicted a
decreased propulsive force peak with an increased propulsive
force impulse on the paretic side. Overall, the extent of
predicted propulsive force changes tended to increase with each
subsequent treatment optimization, though this general trend
was not strictly followed. The AP force profile was the most
similar between the two sides for optimal muscle selection with
optimal stimulation timing.

While the predicted joint angles for the four treatment
optimizations were similar to the experimental gait motion,
some differences were still evident (Figure 5, see animations in
Supplementary Material). For paretic leg hip flexion relative
to the experimental trajectory, all four optimizations predicted

TABLE 6 | Difference in anterior-posterior (AP) force impulse between the two legs

for the baseline optimization with no muscle stimulation and the three FastFES

treatment optimizations, along with percent reduction in AP force impulse

difference relative to baseline.

Treatment optimization problem AP impulse

difference (Ns)

Reduction in

difference (%)

No stimulation-baseline 19.5 —

Stimulate standard muscles with

standard timing

11.6 40.6

Stimulate standard muscles with

optimal timing

10.6 45.4

Stimulate optimal muscles with

optimal timing

7.0 64.1

a decrease over most of stance phase, an increase during the
first half of swing phase, and a decrease during the second
half of swing phase. These changes made the paretic leg hip
flexion trajectories more similar to the non-paretic leg hip flexion
trajectories. For paretic leg knee flexion, the four optimizations
predicted an increase over most of stance phase and a decrease
at the end of swing phase. The increase during stance phase
was most pronounced for the optimization that used optimal
muscle selection. The decrease at the end of swing phase
made the paretic leg knee flexion trajectories more similar to
the non-paretic leg knee flexion trajectories. Maximum paretic
leg knee flexion just after toe off increased only for the two
optimizations that used standard muscle selection, and even
then, the increases did not approach the corresponding peak
values on the non-paretic side. For paretic leg ankle dorsiflexion,

TABLE 7 | Muscle stimulation parameters found by FastFES treatment

optimizations.

Treatment optimization

problem

Stimulated

muscles

A ton (%) toff (%)

Stimulate standard muscles with

standard timing

GasMed 0.70 46 49

TibAnt 0.70 65 2

Stimulate standard muscles with

optimal timing

GasMed 0.24 34 55

TibAnt 0.70 64 6

Stimulate optimal muscles with

optimal timing

Sol 0.62 16 45

Semimem 0.70 0 7

Muscle name abbreviations are defined in Table 1. A is stimulation amplitude, ton is

stimulation on-time as percent of gait cycle, and toff is stimulation off-time as percent

of gait cycle. Off-time is less than on-time if the stimulation wrapped around the end of

the gait cycle to the start of the same gait cycle.

FIGURE 3 | Experimental and predicted activation patterns for electrically stimulated muscles. Activation patterns for standard muscle selection involving stimulation

of GasMed and TibAnt (top row) and optimal muscle selection involving stimulation of Sol and Semimem (bottom row) are presented for the paretic leg. Exp indicates

experimental curves, Base indicates curves from the baseline treatment optimization with no muscle stimulation, Std/Std indicates curves from the FastFES treatment

optimization using standard muscle selection with standard stimulation timing, Std/Opt indicates curves from the FastFES treatment optimization using standard

muscle selection with optimized stimulation timing, and Opt/Opt indicates curves from the FastFES treatment optimization using optimized muscle selection with

optimized stimulation timing.
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FIGURE 4 | Experimental and predicted ground reaction forces over the gait cycle. Normal ground reaction force (top row) and propulsive ground reaction force

(bottom row) are presented for the non-paretic leg (left column) and the paretic leg (right column). Thin vertical lines indicate locations of heel strike and toe off. Exp

indicates experimental curves, Base indicates curves from the baseline treatment optimization with no muscle stimulation, Std/Std indicates curves from the FastFES

treatment optimization using standard muscle selection with standard stimulation timing, Std/Opt indicates curves from the FastFES treatment optimization using

standard muscle selection with optimized stimulation timing, and Opt/Opt indicates curves from the FastFES treatment optimization using optimized muscle selection

with optimized stimulation timing. Note that the non-paretic leg is the left leg while the paretic leg is the right leg.

TABLE 8 | Peak and impulse of propulsive force and breaking force for the paretic and non-paretic leg for the baseline optimization with no muscle stimulation and the

three FastFES treatment optimizations, along with percent reductions relative to baseline (indicated in parentheses).

Force Treatment optimization problem Paretic leg Non-paretic leg

Peak (N) Impulse (Ns) Peak (N) Impulse (Ns)

Propulsive No stimulation—baseline 37.8 (–) 7.2 (–) 106.2 (–) 25.6 (–)

Stimulate standard muscles with standard timing 44.9 (18.6%) 9.9 (36.8%) 97.7 (−8.0%) 22.6 (−11.6%)

Stimulate standard muscles with optimal timing 34.7 (−8.3%) 9.5 (31.9%) 97.0 (−8.6%) 22.7 (−11.3%)

Stimulate optimal muscles with optimal timing 41.6 (9.9%) 10.1 (39.0%) 91.1 (−14.2%) 20.0 (−21.9%)

Braking No stimulation—baseline −113.3 (–) −22.0 (–) −81.9 (–) −20.9 (–)

Stimulate standard muscles with standard timing −107.2 (−6.1%) −21.3 (−3.3%) −83.9 (2.5%) −22.4 (7.4%)

Stimulate standard muscles with optimal timing −104.5 (−8.8%) −20.4 (−7.3%) −94.2 (15.0%) −22.9 (9.7%)

Stimulate optimal muscles with optimal timing −78.8 (−34.5%) −18.7 (−15.0%) −92.7 (13.2%) −21.7 (3.7%)

all four optimizations predicted an increase over the first
half of stance phase. For paretic leg ankle inversion, the two
optimizations that used standard muscle selection predicted
an increase over the entire gait cycle, while the optimization
that used optimal muscle selection predicted a decrease over
most of stance phase. The same optimization predicted an
increase in non-paretic leg ankle inversion over much of the
gait cycle.

Predicted lower body joint moments also exhibited notable
changes in response to the different simulated stimulation
conditions (Figure 6). For all four optimizations, the hip
extension and abduction moments were similar to experimental
trajectories, with the largest deviation being an increased paretic
leg hip abduction moment in the middle of stance phase. The

knee extension moment on the paretic side showed little change
from the experimental trajectory except for the optimization
that used optimal muscle selection, which predicted a decreased
knee extension moment at the start of stance phase and an
increased moment from the middle to the end of stance phase.
On the non-paretic side, the knee extension moment increased at
the end of stance phase for all four optimizations. The paretic
ankle plantarflexion moment exhibited the most prominent
joint moment changes, with all four optimizations predicting
an increase over stance phase relative to the experimental
trajectory. The optimization that used optimal muscle selection
predicted the largest increase, with the peak value reaching the
corresponding peak on the non-paretic side. The paretic ankle
eversion moment also exhibited prominent changes. The two
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FIGURE 5 | Experimental and predicted lower body joint angles over the gait cycle. Hip flexion (first row), hip adduction (second row), knee flexion (third row), ankle

dorsiflexion (fourth row), and ankle inversion (fifth row) are presented for the non-paretic leg (left column) and the paretic leg (right column). The legend is the same as

in Figure 2.

optimizations that used standard muscle selection predicted a
decreased ankle eversion moment over most of stance phase,
while the optimization that used optimal muscle selection
predicted an increase over the same region.

DISCUSSION

This study used a personalized neuromusculoskeletal walking
model coupled with direct collocation optimal control to
predict how FastFES treatments should be implemented to

maximize propulsive force symmetry for an individual post-
stroke who was a non-responder to the standard FastFES
training protocol. Though FastFES is a promising treatment for
post-stroke gait neurorehabilitation, methods for customizing
FastFES prescriptions to the unique needs of individual patients
have yet to be developed. Using treadmill gait data collected
from a non-responder to FastFES training, we personalized
a full-body neuromusculoskeletal model and then used it
to predict improvement in the subject’s AP force symmetry
for three FastFES treatment scenarios: (1) Standard muscle
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FIGURE 6 | Experimental and predicted lower body joint moments over the gait cycle. Hip extension moment (first row), hip abduction moment (second row), knee

extension moment (third row), ankle plantarflexion moment (fourth row), and ankle eversion moment (fifth row) are presented for the non-paretic leg (left column) and

the paretic leg (right column). The legend is the same as in Figure 2.

selection with standard stimulation timing, (2) Standard muscle
selection with optimized stimulation timing, and (3) Optimized
muscle selection with optimized stimulation timing. Overall, the
more flexibility a FastFES treatment optimization was given,
the more the subject’s predicted AP force asymmetry was
reduced. Our results suggest that for this particular subject,
(1) Stimulation of standard muscles (i.e., TibAnt and GasMed)
with standard timing should produce an acute improvement in
the subject’s propulsive force symmetry between the two legs,
(2) A comparable improvement in propulsive force symmetry

could potentially be achieved for this subject by stimulating
TibAnt with standard settings and GasMed with decreased
amplitude but increased duration, (3) A larger improvement
in the subject’s propulsive force symmetry could potentially be
achieved by stimulating Sol and Semimem in place of TibAnt
and GasMed, and (4) Large improvements in propulsive force
symmetrymay not guarantee large improvements in jointmotion
symmetry. Thus, future optimal control studies should explore
adding kinematic symmetry terms to the optimization cost
function so that improvements in both types of symmetry
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can be predicted simultaneously. The methodology developed
in this study therefore provides only a first step toward
computational design of personalized FastFES prescriptions
that are customized to the unique functional limitations of
the patient.

Since our subject was the non-responder in a recent FastFES
clinical study (Allen et al., 2018), an important question is
why our treatment optimization using standard muscle selection
with standard stimulation timing predicted a large improvement
in propulsive force symmetry. This apparent inconsistency can
be explained by considering the differences between these two
situations. During training in the laboratory with stimulation
(the situation predicted by the model), AP force symmetry is
improved due to an acute response to the electrical stimulation,
often termed an orthotic effect. This orthotic effect demonstrates
that the FES is able to augment force generation in the
ankle muscles and generate greater paretic leg propulsion
while the FES is on. In contrast, after multiple sessions of
FastFES training, when gait performance is evaluated in the
community or measured in the lab without stimulation, AP
force symmetry is determined by the therapeutic or long-
term retention effect of the treatment. The therapeutic effect
may be influenced by multiple factors including the magnitude
of favorable neuroplasticity induced through repeated training
as well as improvements in muscle strength, cardiovascular
endurance, and psychosocial factors. EMG data published in
the previous FastFES clinical study (Allen et al., 2018) indicates
that our subject exhibited statistically significant increases in
unstimulated Sol and TibAnt activity pre- to post-training.
However, increases in Sol activity were small in magnitude and
thus potentially insignificant functionally, while the increase in
TibAnt activity was in stance phase rather than swing phase as
desired. Thus, our results suggest that for this subject, the level of
acute improvement obtained due to stimulation during training
may have been larger than the level of long-term improvement
obtained due to neuroplasticity after the completion of training.
The fact that this subject improved AP force symmetry during
stimulation but did not retain the improvement afterward
when tested without stimulation explains in part why he was
classified as a non-responder to the intervention. A challenge
for the future is finding a way to predict reliably which
muscle excitations are the most amenable to long-term training-
induced neuroplasticity.

Three additional considerations may help explain this
apparent inconsistency further. First, the subject did improve
peak paretic propulsive force following FastFES training
(Allen et al., 2018), but he started with extremely low peak
propulsive force (as seen in Figure 4) and achieved only a
small improvement following training. Second, our optimal
control problems quantified improvements in propulsive force
symmetry using the integral of AP force over the gait cycle,
which accounts for not only peak propulsive force but also
peak braking force using a mathematical function that is
continuous and differentiable. In the clinical study, the change
in the subject’s peak paretic braking force was not reported,
though our optimal control predictions suggest that standard
muscle selection may not reduce peak paretic braking force

as substantially as does optimal muscle selection (Figure 4;
Table 8). Third, it is possible that the subject did not try
to minimize propulsive force asymmetry when relearning to
walk. A potentially insightful experiment would be to provide
the subject with real-time feedback of his propulsive force
asymmetry and instruct him to attempt to minimize it,
similar to recent studies performed on healthy individuals
(Schenck and Kesar, 2017) and individuals post-stroke (Genthe
et al., 2018). Such an experiment could elucidate whether the
subject’s propulsive force asymmetry is primarily due to neural
control limitations, biomechanical constraints, or a subconscious
decision to optimize other quantities (e.g., metabolic cost
Zarrugh et al., 1974; Bertram, 2005).

Our optimal control predictions suggest two alternate FastFES
protocols that could potentially benefit this subject. The
first alternate protocol would decrease GasMed’s stimulation
amplitude while prolonging its stimulation duration. This change
is consistent with GasMed being stimulated to increase late-
stance paretic propulsion, whereas TibAnt is stimulated to
prevent foot drop during swing phase (Hakansson et al., 2011;
Kesar et al., 2011). This protocol has the potential benefits
of reducing GasMed fatigue and stimulation discomfort while
also reducing the sensitivity of the resulting motion to the
selected stimulation on-time and off-time. The second alternate
protocol would replace GasMed and TibAnt stimulation with
Sol and Semimem stimulation. This protocol has never been
investigated, so it is unknown whether stimulation of these
alternate muscles would facilitate or hinder the subject’s long-
term neuroplasticity and motor learning. A potential benefit
of the Sol and Semimem stimulation protocol is that it may
produce a large decrease in braking force peak and impulse for
the paretic leg (see Figure 4; Table 8). For any FastFES protocol
change, implementation of predicted stimulation amplitudes
would be a challenge. Some method would be needed to calibrate
the relationship between model-predicted and experimentally-
applied stimulation amplitude (Kesar et al., 2008; Perumal
et al., 2008). However, if the predicted relative stimulation
amplitude between the two stimulated muscles was reliable, then
it could be possible to constrain the two stimulation amplitudes
to maintain the desired ratio. With this approach, only a
single stimulation amplitude would need to be manipulated
experimentally when exploring subject-specific stimulation
settings, realizing that the maximum achievable stimulation will
depend on the subject’s tolerance of the discomfort caused by
electrical stimulation.

It is interesting to consider whether the two muscles (Sol
and Semimem) selected by our third treatment optimization
would be logical choices based on interpretation of their
biomechanical roles. While paretic (right) propulsive force
generation was clearly inhibited in the subject’s experimental
gait pattern, braking force was also larger on the paretic side
than on the non-paretic side, likely due to poor coordination.
Thus, muscle stimulation that acts to decrease early-stance
braking and/or increase late-stance propulsion would improve
propulsion symmetry in this subject. Indeed, the optimization
that selected the best two muscles to stimulate chose one muscle
to increase propulsive force in late stance (Sol) and another
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muscle to decrease braking force in early stance (Semimem),
consistent with minimization of AP force impulse asymmetry.
Several studies have reported that Sol and GasMed contribute to
forward acceleration of the trunk in mid to late stance (Neptune
et al., 2001; Liu et al., 2006) and that both contribute to propulsive
ground reaction force in late stance (Neptune et al., 2004; Allen
and Neptune, 2012). Thus, selection of Sol as a replacement
for GasMed is not surprising. Although stimulating Sol can
improve propulsive force in late-stance, stimulation of Sol during
mid-stance may actually contribute to increased braking forces
(Neptune et al., 2004). In contrast, published studies have also
reported that the hamstrings contribute to propulsive ground
reaction force in early to mid-stance (Neptune et al., 2004;
Allen and Neptune, 2012), potentially explaining the selection
of Semimem to counteract increased braking from the Sol.
However, these choices also resulted in increased knee flexion
throughout most of stance phase, which may not be desirable
from either a metabolic perspective or an aesthetic perspective.
Finally, despite elimination of TibAnt stimulation, our optimal
treatment still predicted that the paretic toe would clear the
ground, potentially through increased knee flexion at the start of
swing phase (Figure 5).

Though muscle synergy analysis is often used to quantify
control complexity and inter-muscle coupling in experimentally
measured EMG signals, our study used muscle synergy
concepts for broader control-related reasons. First, we used
a low-dimensional set of synergy activations rather than 36
independent muscle activations to control each leg since
synergy activations have been shown to generate more accurate
predictions of walking under new conditions (Meyer et al., 2016).
Second, we used synergy rather than muscle activation controls
to simplify the model’s control structure, which significantly
improves computational speed and convergence of optimal
control walking predictions (Meyer et al., 2016). Third, we used
synergy activation controls so that missing muscle activations
could be predicted as linear combinations of the synergy
activations extracted from muscle activations with associated
EMGmeasurements (Bianco et al., 2017).

While our choice of five synergies to control each leg was
based on achieving at least 95% VAF for each individual muscle
activation in both legs, this choice was informed by three
additional considerations. First, to closely match all available
experimental data (i.e., joint angles, ground reactions, and
muscle activations), more synergies are required than indicated
by synergy analysis of muscle activation data alone. Because
our walking predictions are dynamically consistent, the muscle
activations controlling the model must be of high enough fidelity
to reproduce the subject’s experimental data closely. Based on
our previous work (Meyer et al., 2016), the number of synergies
found by synergy analysis of EMG data alone may not be enough
to produce a simulated walking motion that tracks experimental
data as closely as desired. The reason is that matching joint
motion, ground reaction, and EMG data simultaneously with
muscle synergy controls is a much more constrained situation
than matching only EMG data with muscle synergy controls,
thereby necessitating a larger number of synergies than would
have been retained otherwise. Second, to predict missing muscle

activations using synergy activations extracted frommuscles with
EMG data, more synergies are required than indicated by synergy
analysis of EMG data alone (Bianco et al., 2017). As noted earlier,
95% total VAF does not guarantee a comparably high individual
muscle %VAF. To minimize the risk of poor construction of
missing activations, we chose the number of synergies so that
all measured muscle activations were reconstructed with at
least 95% VAF. Use of more than 5 synergies would likely not
improve our ability to fit measured activations or predict missing
activations, while use of fewer than 5 synergies would produce
poorer fitting of some measured activations and likely poorer
prediction of missing activations.

To evaluate theoretically whether stimulation of our two
predicted muscles (Sol and Semimem) might be more effective
for this subject than stimulation of the two standard muscles
(GasMed and TibAnt), we examined the structure of the subject’s
synergy vectors (SVs) for 2 and 3 paretic leg synergies (Figure 7).
We chose these low numbers of synergies since they achieved
95% total VAF for experimental muscle activations from both
legs and provide the simplest perspective for interpretation
purposes. For the 2-synergy solution, paretic GasMed did
not appear predominantly in either SV, while paretic TibAnt
appeared with moderate weight in the first SV. Thus, if training
does not alter the composition of the SVs, then increased
recruitment of GasMed may produce large unwarned increases
in the recruitment of other muscles. In contrast, paretic Sol
possessed the largest weight in the second SV, and paretic
Semimem possessed a moderate weight in the same SV. Thus,
if stimulating paretic Sol and Semimem during FastFES training
resulted in enhanced recruitment of the second synergy, the
activations of bothmuscles would increase together, which would
be undesirable since no overlap exists in the predicted optimal
stimulation timing for these two muscles. Not surprisingly, this
interpretation changes for the 3-synergy solution, where paretic
Sol and Semimem appear prominently in two different SVs—
the second synergy for Sol and the third synergy for Semimem.
Since the optimal stimulation timing for these two muscles
is non-overlapping, decoupling the recruitment of these two
muscles could be beneficial. Increased recruitment of the second
and third synergies would also increase recruitment of other
muscles (e.g., gluteus maximus, peroneus longus, tensor fascia
latae, and vastus medialis), which may or may not be beneficial.
In contrast, neither GasMed nor TibAnt appears prominently
in any of the three SVs, suggesting that it could be difficult
to increase the activation of these muscles without creating
undesirable activation increases in other muscles. If the number
of synergies is increased further, GasMed and TibAnt remain
weakly represented in the SVs, while Sol and Semimem become
more dominant in separate SVs, which is consistent with the
idea that the activation of these two muscles could potentially
be trained independently. Thus, analysis of the subject’s muscle
synergies at least hints at the possibility that the two new
muscles selected by the optimization may be worth considering
for stimulation.

Interestingly, the three FastFES treatment optimizations
predicted comparable values for peak paretic propulsive force
during stance phase (Figure 4) as well as peak paretic knee flexion
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FIGURE 7 | Synergy vectors for 14 paretic leg muscle activations derived from measured EMG signals for 2 (top) and 3 (bottom) synergies. Prior to synergy analysis,

measured EMG signals were processed and normalized as part of the muscle-tendon model personalization process. Muscle name abbreviations are listed in Table 1.

during swing phase (Figure 5). In both cases, these peak values
were substantially lower than the corresponding peak values
predicted for the non-paretic leg. For our subject, a low value
of peak paretic propulsive force resulted in a slow self-selected
walking speed, while a low value of peak paretic knee flexion
necessitated a compensatory hip hiking strategy to ensure that
the paretic foot cleared the ground during swing phase (Chen
et al., 2005). Since AP force asymmetry was minimized in the
cost function, these observations suggest that the personalized
model hit a “ceiling” on the increase in paretic propulsive force

achievable using electrical stimulation of only twomuscles.While
the model may have also hit a “ceiling” on the achievable increase
in paretic knee flexion, this conclusion is less clear since a knee
flexion asymmetry term was not included in the cost function.
If such a term were added, the resulting increase in paretic
knee flexion would likely be accompanied by a corresponding
decrease in paretic propulsive force. To improve peak paretic
propulsive force and peak paretic knee flexion to the desired
levels simultaneously, the optimal control problem would need
to change the subject’s paretic leg muscle synergies. A future
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optimal control study could therefore explore finding the smallest
changes to a single paretic leg synergy activation that would
bring the subject’s peak paretic propulsive force and peak paretic
knee flexion as close as possible to their desired levels. The
predicted synergy changes could then inform complementary
neurorehabilitation efforts or even electrical stimulation of the
spinal cord to recruit the identified synergy (Wenger et al., 2016).

Our study possesses several important limitations that inform
interpretation of our current results and suggest directions for
future investigation. First, only a single subject was studied. We
specifically selected a non-responder to FastFES training so as
to maximize our chances of identifying alternate stimulation
protocols that could potentially improve the subject’s walking
ability. Whether or not the same modeling approach would
work for other subjects will require further investigation.
Second, no measurements were available for the forces and
torques exerted by the handlebar on each hand, plus the
hand loads estimated during the model personalization process
were applied to the model during the treatment optimization
process. Experimental measurement of hand loads would greatly
simplify model personalization. Allowing the hand loads to vary
during treatment optimization could alter our propulsive force
predictions. Third, experimental stimulation does not target
individual muscles as directly as modeled in this study. In
practice, medial and lateral gastrocnemius are often stimulated
together by a single electrode. Even if GasMed and TibAnt
were well-targeted for electrical stimulation, some stimulation
would likely “bleed” into other plantarflexor and dorsiflexor
muscles. Modeling of this “bleeding” phenomenon would impact
our treatment predictions, though the extent to which the
predictions would be changed is unknown. Fourth, no measure
of kinematic asymmetry was included in the optimal control
cost function. When initiating this study, we expected that
improved propulsive force symmetry would naturally result
in improved joint motion symmetry. This expectation proved
to be incorrect, suggesting that some measure of kinematic
asymmetry should be included in future optimal control studies
of FastFES treatment design. However, no published study to
date has presented an optimal control problem formulation
that is capable of turning an asymmetric walking motion
into a symmetric one. Thus, development of a problem
formulation that enforces kinematic symmetry remains an
important challenge for the neuromusculoskeletal modeling
research community. Fifth, simulated electrical stimulation was
explored for only two paretic leg muscles due to current
technical limitations in the FastFES hardware and software. If
stimulation of three or even four muscles was investigated, it
is possible that substantial improvements in both propulsive
force symmetry and kinematic symmetry could be predicted.
However, stimulation of more than two muscles is not feasible
with the electrical stimulation system used in this study. Sixth,
our FastFES treatment optimizations assumed that the subject’s
neural control strategy remained largely unchanged by the
application of FES. In reality, if a subject responds to FastFES
training, one would expect his or her neural control strategy to
change over the course of treatment as favorable neuroplasticity
occurred (Allen et al., 2018). Modeling how a patient’s neural

control strategy changes over time with training would likely alter
our treatment predictions.

Another important limitation of this study was the amount
of time and effort required to perform the entire sequence of
optimizations used for model personalization and treatment
optimization. Generation of the results reported in this study
required over 2 years of effort by a single Ph.D. student. Once
the entire process was set up for a new subject performing
a new task (walking with hands on handlebars), all model
personalization optimizations could be completed in roughly
5 h of CPU time, while each treatment optimization required
between 3 and 15min of CPU time. Thus, the primary bottleneck
was not computation time but rather the time required to learn
the entire computational workflow, process the experimental
data to get them into the correct format, and identify appropriate
optimization problem formulations to get each step to work
properly the first time. In the present study, the most challenging
problem formulation issues were related to how to minimize
propulsive force asymmetry, model the hands grasping the
handlebar, and predict the best two muscles to stimulate. None
of these issues had been explored in previous optimal control
studies of human walking, and all of them required running
hundreds of optimal control problems before appropriate
problem formulations could be identified. We are continuing
to refine our model personalization and treatment optimization
workflow so that the steep learning curve currently required to
become proficient in the entire process can be eliminated as
a bottleneck.

One of the biggest limitations of this study was our
inability to evaluate experimentally our optimal FastFES
treatment prediction. Such an evaluation would have required
completion of an additional training study for this subject,
which unfortunately we were unable to perform. We hope to be
able to apply our optimal treatment prediction to this subject,
as well as explore the use of model-based optimal treatment
predictions for other subjects, as part of a future FastFES
training study.

In conclusion, this study explored the feasibility of using
subject-specific neuromusculoskeletal models combined with
direct collocation optimal control to predict novel FastFES
treatment prescriptions that may improve a specified treatment
target—in this case, inter-leg propulsive force symmetry. The
ability to tailor neurorehabilitation treatments to the unique
needs of individual patients would be an important next
step in modern healthcare. In the case of stroke, walking
deficits vary widely from patient to patient, highlighting the
need for an objective and effective treatment customization
process. In the current study, a computational approach to
FastFES treatment customization predicted that changing the
stimulation amplitude and timing of a typically stimulated
muscle, or changing which two muscles are stimulated, may
improve a specific subject’s paretic propulsion significantly.
While this computational approach is still too difficult and
time consuming to be feasible on a large scale, future
improvements in computational methodology and technology
may eventually make it possible to perform this approach
on a routine basis, potentially allowing treatment decisions
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to be based on objective predictions of a patient’s post-
treatment function.
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