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A large external knee adduction torque during gait has been correlated with the progression of knee
osteoarthritis (OA). Though foot path changes (e.g. toeing out) can reduce the adduction torque, no
method currently exists to predict whether an optimal foot path exists for a specific patient. This study
evaluates a patient-specific optimization cost function to predict how foot path changes influence both
adduction torque peaks. Video motion and ground reaction data were collected from a patient with knee
OA performing normal, toe out, and wide stance gait. Joint and inertial parameters in a dynamic, 27
degree-of-freedom, full-body gait model were calibrated to the patient’s normal gait data. The model
was then used in gait optimizations that predicted how the patient’s adduction torque peaks would
change due to changes in foot path. The cost function tracked the patient’s normal gait data using
weight factors calibrated to toe out gait and tested using wide stance gait. For both gait motions, the
same cost function weights predicted the change in both adduction torque peaks to within 7% error.
With further development, this approach may eventually permit the design of patient-specific
rehabilitation procedures such as an optimal foot path for patients with knee OA.
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1. Introduction

As computational technologies continue to improve,

dynamic musculoskeletal models may eventually permit

optimization of functional outcome for surgical or

rehabilitative interventions on an individual patient

basis. An important step toward this goal is the

development of musculoskeletal models that match key

features of the patient’s anatomy and movement

characteristics. These features include: (1) the kinematic

structure of the patient, as represented by the types,

positions, and orientations of functional axes in the body

segments (Sommer and Miller 1980, Bogert et al. 1994,

Reinbolt et al. 2005), (2) the inertial properties of the

patient, as indicated by segment masses, mass centres, and

moments of inertia (Vaughan et al. 1982, de Leva 1996,

Rao et al. 2006), and (3) the control strategy used by the

patient (Buchanan et al. 2004, Liu et al. 2005, Bottasso

et al. 2006). If all three features could be calibrated to pre-

treatment movement data collected from a patient, the

calibrated model could be used to optimize functional

outcome for the various treatment scenarios and

parameters under consideration.

The control strategy feature is the most difficult one to

calibrate to a patient’s movement data, since a wide

variety of approaches could be used to model a patient’s

unique control characteristics. One approach is to develop

a patient-specific neural control model based on excitation

signals sent to individual muscle actuators. Recent studies

using optimization methods and EMG-based controllers

have made significant progress in this area (Anderson and

Pandy 2001, Thelen et al. 2003, Buchanan et al. 2004).

Apart from the assumed controller structure, one of the

difficulties with this approach is developing methods to

determine patient-specific muscle–tendon model par-

ameters (e.g. peak isometric force, optimal muscle fiber

length, tendon slack length; Zajac 1989, Garner and Pandy

2003, Lloyd and Besier 2003) and moment arms (Arnold

et al. 2000, Murray et al. 2002) for each muscle included

in the larger musculoskeletal model. A simpler approach

is to develop control laws based on net joint torques

calculated from inverse dynamics and on other external
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data that can be measured from the specific patient

(Suzuki et al. 1996, Wada et al. 2001, Liu et al. 2005).

Though less powerful than methods based on control of

individual muscles, such an approach could allow

clinicians to predict how a proposed treatment would

alter a patient’s joint motions and loads for some subset of

clinically significant conditions.

This study investigates whether a patient-specific

optimization cost function based on external gait

measurements can be used to predict how changes in

foot path affect the external knee adduction torque during

gait. Since the magnitude of this torque has been

positively correlated with medial compartment knee load

(Zhao et al. 2007) and the progression of medial

compartment knee osteoarthritis (OA; Baliunas et al.

2002, Miyazaki et al. 2002), rehabilitation treatments that

lower this torque may be useful for slowing the

progression of knee OA. The patient-specific cost function

is defined by adjustable weight factors on error terms that

track a patient’s normal kinematic and kinetic gait data.

The goal is to find weights such that minimization of the

cost function produces the patient’s knee adduction torque

curve for gait motions with altered foot paths. The work

presented here is the first step toward the development of a

computational approach for designing patient-specific

rehabilitation procedures, such as an optimal foot path for

patients with knee OA.

2. Methods

2.1 Experimental gait data

Experimental gait data were collected from a patient with

knee OA (male, age 40 years, height 170 cm, mass 69 kg)

using a video-based motion analysis system with modified

Cleveland Clinic marker set (Motion Analysis Corpor-

ation, Santa Rosa, CA) and two force plates (AMTI,

Watertown, MA). The modification involved adding three

markers to each foot segment to allow three-dimensional

tracking of the feet. Institutional review board approval

and informed consent were obtained prior to the

experiments. For all trials, the patient walked at a self-

selected speed of 1.4 m/s. Unloaded isolated joint motions

were performed to exercise the primary functional axes of

each lower extremity joint (hip, knee and ankle on each

side). For each joint, the patient was instructed to move

the distal segment within the physiological range of

motion so as to exercise all degrees-of-freedom (DOFs) of

the joint (Reinbolt et al. 2005). Gait motion and ground

reaction data were collected to provide simultaneous

motion of all lower extremity joints under load-bearing

physiological conditions. One cycle (i.e. left heel strike to

left heel strike) of three different gait motions (normal,

toe out, and wide stance) was analysed to produce a range

of different knee adduction torque curves for testing the

predictive capabilities of the proposed patient-specific

cost function.

2.2 Patient-specific gait model

A dynamic, patient-specific gait model was developed to

predict new gait motions and loads given experimental

data for the patient’s normal gait motion. The full-body

model is three-dimensional and possesses 27 DOFs

(figure 1). The equations of motion for the model were

derived using two different methods—the symbolic

manipulation software Autoleve (OnLine Dynamics,

Sunnyvale, CA) and the musculoskeletal modeling

software SIMM with the Dynamics Pipeline (Motion

Analysis Corporation, Santa Rosa, CA), thereby allowing

us to verify the accuracy of the equations. Comparable to

Anderson and Pandy’s (2001) model structure, three

translational and three rotational DOFs express the

movement of the pelvis in the laboratory reference

frame, and the remaining 13 segments comprise four open

chains branching from the pelvis. The kinematic structure

of the model is defined by joint parameters that designate

the positions and orientations of joint axes within adjacent

segment coordinate systems. The kinematic structure

utilizes the following joint types: three DOF hip, one DOF

knee (with external reaction torque calculated for

adduction), two DOF ankle (nonintersecting axes; Bogert

et al. 1994), three DOF back, two DOF shoulder, and one

DOF elbow. The inertial properties of the model are

defined by inertial parameters that designate each

Figure 1. Schematic of the three-dimensional, 14 segment, 27 degree-
of-freedom full-body gait model with segments connected by gimbal,
universal, and pin joints.
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segment’s mass, mass centre along its longitudinal axis,

and three central principal moments of inertia.

All joint and inertial parameters in the model were

calibrated to the patient’s normal gait data and isolated

joint motion experiments. First, values of the joint

parameters defining the hip, knee and ankle joint in each

leg were identified using optimization of the kinematic

data from the unloaded isolated joint motion trials

(Reinbolt et al. 2005). Next, these values were adjusted

slightly via optimization to match the kinematic data from

the loaded normal gait trial. We used this two-stage

approach since gait trials do not exercise the full range of

motion for each lower extremity joint. Finally, values of

the inertial parameters for all segments in the model were

identified using optimization of the kinetic data from the

normal gait trial (Fregly et al. 2007). Matlab’s nonlinear

least squares algorithm (The Mathworks, Natick, MA)

was used for all optimizations. The resulting joint and

inertial parameter values were assumed to be valid for all

three gait motions (normal, toe out, and wide stance)

performed by the patient.

For the subsequent predictive gait optimizations,

inverse rather than forward dynamics simulations were

performed with the calibrated model (Mazza and

Cappozzo 2004), thereby eliminating stability problems

due to the use of open-loop joint torque controls. Inputs to

the inverse dynamics model were values of the 27

generalized coordinates, their first and second time

derivatives, and bilateral ground reaction forces and

torques, while outputs were 27 joint torques (including six

residual forces and torques acting on the pelvis), bilateral

foot paths (not generalized coordinates), trunk orientation

(also not generalized coordinates), and bilateral centres of

pressure. Ground reactions were set to zero during periods

when the foot was known to be in contact with the floor.

The pelvis residual loads, which represent errors in the

model’s structure, parameters values, and/or experimental

inputs, were driven close to zero through calibration of the

model’s joint and inertial parameters.

2.3 Patient-specific cost function

To predict changes in the patient’s knee adduction torque

due to changes in foot path, we constructed an

optimization cost function containing weight factors that

were calibrated to the patient’s toe out gait data and then

tested using his wide stance gait data. The proposed cost

function assumes that different gait motions produced by

the same patient will be neighbouring solutions of one

another. For example, we do not expect the joint motions

and torques from a patient’s toe out gait motion to be

markedly different from those of his normal gait motion.

Thus, we assume that a patient’s normal gait data provides

a good initial guess for how he will walk under other

conditions. This assumption leads to the formulation of an

optimal tracking problem, where the cost function

minimizes a weighted sum of squares of changes in

kinematic and kinetic quantities away from the patient’s

normal gait data. If the correct weights are placed on the

various quantities in the cost function, then ideally the

optimization will predict how the patient would walk

under conditions for which experimental data are not

available.

The cost function weights were calibrated to the

patient’s toe out gait data by solving a two-level

optimization problem. The outer-level optimization varied

the weights used by the inner-level cost function so as to

minimize errors between experimental and predicted

adduction torque peaks for toe out gait. The outer-level

cost function was defined as

e ¼ min
w
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2 þ ðT2 2 T 0
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2
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where e is the cost function value, w are the six inner-level

cost function weights treated as outer-level design
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torque peaks measured experimentally, and T 0
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where p are 660 polynomial-Fourier coefficients treated as

inner-level design variables, w1 through w6 are the weight

factors provided by the outer-level optimizer, DqFoot are

foot path tracking errors, DqTrunk are trunk orientation
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tracking errors, DqPelvis are pelvis pose tracking errors,

DqLeg are joint angle tracking errors for the legs, DTLeg are

joint torque tracking errors for the legs, DFGround are

ground reaction force tracking errors, DCoPFoot are foot

centre of pressure tracking errors, and DFPelvis and DTPelvis
are tracking errors for the residual forces and torques

acting on the pelvis. Units are mm for translations, deg for

rotations, N for force, and Nm for torque. A cubic

polynomial plus eight Fourier harmonics (i.e. 20

coefficients per curve) was used to parameterize each

motion and ground reaction curve (Nagurka and Yen

1990). The only exceptions were the motion curves for the

shoulders and elbows, which were prescribed to match the

patient’s nominal gait data. The initial guess and tracked

values for the inner-level optimization were taken as the

patient’s normal gait data. For tracking purposes, three

fixed offsets (internal–external rotation, medial–lateral

translation and anterior–posterior translation) were

calculated to convert the patient’s normal foot path into

a toe out foot path that best matched his toe out gait data.

The outer-level optimization utilized a univariate search

algorithm developed by the lead author (Fregly et al.

2005) while the inner-level optimization utilized Matlab’s

nonlinear least squares algorithm.

Once the inner-level cost function weights were

calibrated to the patient’s toe out gait data, they were

tested using his wide stance gait data. Testing required

only the inner-level optimization, with three new foot path

offsets being calculated to convert the patient’s normal

foot path into a wide stance foot path that best matched his

wide stance gait data. Thus, while calibration required

repeated inner-level optimizations to determine the inner-

level cost function weights, testing required only a single

inner-level optimization to evaluate how well the same

cost function weights could predict both adduction torque

peaks for a different gait motion.

3. Results

After the cost function weights were calibrated to the

patient’s toe out gait data, the inner-level optimization

produced close predictions of both knee adduction torque

peaks. The first adduction torque peak was matched to

within 7% error and the second peak to within 3% (figure

2(a)). The primary kinematic change observed exper-

imentally, which was an increase in hip external rotation,

was also well predicted (figure 3(a)). However, not all

kinetic changes observed experimentally were reproduced

by the optimization (figure 4(a)). While the decrease in hip

abduction torque half way through the gait cycle was well

predicted, the decrease in hip extension torque near the

start of the cycle and the increase in knee extension torque

over much of stance phase were not. The optimization

predicted little change in ground reaction forces,

consistent with experimental observations (figure 5(a)).

It also predicted little change in the anterior–posterior

centre of pressure trajectory and a gradual lateral shift in

the medial–lateral centre of pressure trajectory, both

consistent with experimental findings (figure 6(a)).

When the same cost function weights were tested using

the patient’s wide stance gait data, the inner-level

optimization again produced close predictions of both

knee adduction torque peaks. The first abduction torque

peak was predicted to within 7% error and the second peak

to within 6% (figure 2(b)). Unlike for toe out gait, the

primary kinematic changes observed experimentally were

not well predicted, these being an increase in hip and knee

flexion over the first half of the cycle (figure 3(b)). While

the hip extension torque was well predicted, the

optimization again did not predict the increase in knee

extension torque during stance phase, while it also

predicted a spurious decrease in hip abduction torque

during early stance phase (figure 4(b)). Little change in the

ground reaction forces was again predicted, though the

predicted increase in medial force was less than that

observed experimentally (figure 5(b)). Finally, the

optimization predicted little change in the anterior–

posterior centre of pressure trajectory and a fixed lateral

offset in the medial–lateral centre of pressure trajectory,

both highly consistent with experimental findings

(figure 6(b)).

4. Discussion

This study evaluated whether a patient-specific optimiz-

ation cost function in conjunction with a patient-specific

Figure 2. Evaluation of left knee adduction torque curves predicted using the patient-specific optimization cost function. Column (a) Toe out gait
prediction for which the cost function weights were calibrated. Column (b) Wide stance gait prediction for which the cost function weights were tested.
Solid curves are from the patient’s normal experimental gait motion, dashed curves are from his toe out or wide stance experimental gait motion, and
dotted curves are from the toe out or wide stance optimization predictions.
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gait model can be used to predict how foot path changes

will affect the patient’s knee adduction torque. The

optimization was formulated as an optimal tracking

problem, where the cost function minimized the weighted

sum of squares of changes away from the patient’s

nominal gait data. The cost function weights were

calibrated to predict the patient’s toe out gait adduction

torque peaks and then tested by predicting his wide stance

gait peaks. After calibration, a single set of cost function

weights successfully predicted both adduction torque

peaks to within 7% error for both toe out and wide stance

gait. Many kinematic and kinetic changes (or lack thereof)

were also predicted well by the optimizations (e.g. the

lateral shift in the centre of pressure), though some

Figure 3. Evaluation of left leg joint angle curves predicted using the patient-specific optimization cost function. Column (a) Toe out gait prediction.
Column (b) Wide stance gait prediction.
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changes observed experimentally were not reproduced

(e.g. the increase in knee extension torque). Thus, while

the proposed cost function accurately predicted the

quantity for which it was calibrated, it did not predict all

potential quantities of interest accurately. Nonetheless,

these initial results suggest that with future developments,

a similar approach may make it possible to design

rehabilitation or surgical treatments so as to maximize

functional outcome for the individual patient.

The ability of a single set of cost function weights to

predict the patient’s adduction torque peaks for two

different gait motions suggests that our initial hypothesis

about neighbouring solutions was reasonable. One possible

outcome was that no cost function weights could be found

Figure 4. Evaluation of left leg joint torque curves predicted using the patient-specific optimization cost function. Column (a) Toe out gait prediction.
Column (b) Wide stance gait prediction.
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that successfully predicted both adduction torque peaks

for toe out gait starting from the patient’s normal gait

motion. Another possibility was that the calibrated

weights successfully predicted both adduction torque

peaks for toe out gait but not wide stance gait. It was

therefore encouraging that a single set of weights

predicted both adduction torque peaks to within 7%

error for two different foot paths, including one for which

the weights were not calibrated.

Despite this result, the calibrated weights did not yield

accurate predictions for all kinematic and kinetic

quantities from the two gait motions with modified foot

paths. This finding may indicate limitations in the model

structure, errors in the model parameters, or (most likely)

Figure 5. Evaluation of left leg ground reaction force curves predicted using the patient-specific optimization cost function. Column (a) Toe out gait
prediction. Column (b) Wide stance gait prediction.

Figure 6. Evaluation of left foot centre of pressure curves predicted using the patient-specific optimization cost function. Column (a) Toe out gait
prediction. Column (b) Wide stance gait prediction.
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the need for refinement in the cost function formulation.

Two obvious refinements are worthy of future investi-

gation. The first would be to put different weights on the

different leg control torques, since different muscle groups

possess different strength properties. The second would be

to eliminate the need to use a normal data set for tracking

purposes. While the assumption that new gait motions are

neighboring solutions of the patient’s normal gait motion

appears to be reasonable, a more elegant solution would be

to calibrate cost function weights to a single data set, as

done in several recent studies (Liu et al. 2005, Bottasso

et al. 2006). This latter approach could also address the

limitation that the current cost function formulation does

not have an obvious physical interpretation tied to a

hypothesized neural control strategy.

One limitation of our two-level optimization approach

is that the calibration process was extremely tedious. Each

time the outer-level optimizer chose a new set of cost

function weights, the inner-level optimizer had to perform

a new optimization to determine the resulting errors in the

predicted adduction torque peaks. Since each inner-level

optimization required about 45 min of CPU time on a

1.7 GHz Pentium M laptop computer, iterating between

the outer- and inner-level optimizers was an extremely

time consuming task. A gradient-based optimizer was

initially implemented at the outer-level, but numerical

noise in the inner-level optimization results made accurate

calculation of finite difference gradients difficult. Switch-

ing from forward to central differencing would have

improved the accuracy of the gradient calculations but at

the cost of double the computation time. The univariate

search method used a bisection method that avoided the

need for gradient information, though this approach was

not highly efficient computationally.

Another limitation of our two-level optimization

approach is that the results depend on which error terms

are included in the cost function. This issue has been noted

in previous studies that seek to determine patient-specific

cost function weights for human movement optimization

problems (Bottasso et al. 2006). In the present study, error

terms were selected for inclusion based on experience

gained from repeated optimizations performed with and

without different terms. However, there is no simple way

to determine whether all of the necessary terms were

included, or whether omission of certain terms would not

affect the predictions adversely. While one term could be

omitted at a time, the current two-level optimization

approach for calibrating the cost function weights is too

inefficient to be repeated a large number of times. Future

studies will investigate new methods for performing the

calibration process in a more computationally efficient

manner.

One possibility for making the calibration process more

efficient would be to replace the inner-level optimization

with a surrogate model. Surrogate models such as

polynomial response surfaces are frequently used in

structural optimization research to approximate the input–

output relationships of a computationally expensive model

(Jansson et al. 2003). For the calibration process, the

relationship between errors in predicted adduction torque

peaks (i.e. the outputs) and values of cost function weights

(i.e. the inputs) could be fitted using polynomial response

surfaces or other surrogate modeling methods (e.g.

Kriging, support vector regression; Queipo et al. 2005).

Each time consuming inner-level optimization would then

be replaced by extremely fast evaluation of a surrogate

model (one for each adduction torque peak). To generate

the surrogate model, one would use design of experiments

(e.g. optimal Latin hypercube) to sample different

combinations of weights. For each combination, an

inner-level optimization would be performed to generate

the corresponding outputs to be used in the surrogate

model fitting process. Once the surrogate models were

available, any type of outer-level optimizer (e.g. gradient-

based, global) could be used to find the optimal set of

weights in a matter of seconds or minutes. Surrogate

models could also provide analytical derivative infor-

mation, and new cost functions could be evaluated rapidly

using additional outputs generated by the inner-level

optimization sample points.

The patient-specific gait model used in the optimiz-

ations also possesses several limitations (e.g. no muscles,

no ground contact model, rigid foot model), the pin joint

knee assumption likely being the most important one. A

single kinematic model was used to represent the patient

under three separate gait conditions, with the optimized

knee axis providing the best possible fit to the three-

dimensional knee motion from the normal gait data. It is

possible that for this patient, who had slight anterior-

cruciate ligament laxity, a single fixed knee axis was not

an accurate representation for all three gait motions. This

hypothesis would explain why the knee extension torque

was predicted more poorly than were the other joint

torques. However, reduction of the tracking weight on

only the knee extension torque improved the prediction,

making it is difficult to conclude whether the cost function

or the model structure was the source of the problem.

Regardless, the knee adduction torque was still well

predicted, suggesting that the pin joint knee assumption

had little influence on the predicted quantity of primary

interest.

One final limitation of the study was that the

optimizations were performed for only a single patient.

Furthermore, only two gait patterns were predicted

starting from the patient’s normal gait data. While our

initial results are encouraging, further evaluation with

additional patients and gait patterns is needed to assess the

limitations and general applicability of the approach.

In terms of future clinical application, an important

issue is determining when a patient-specific cost function

is, and is not, necessary. In some cases, the clinician may

want to predict post-treatment function for given treatment

parameters assuming the patient’s neural control strategy

does not change. For these situations, calibration of cost

function weights is necessary to match what the patient

will do naturally. Predicting how a specified change in foot
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path will affect a patient’s knee adduction torque peaks is

one example. In other cases, the clinician may want to

optimize post-treatment function for unknown treatment

parameters assuming the patient’s neural control strategy

can be changed. For these situations, calibration of cost

function weights is not necessary, but the cost function

must include additional terms related to clinical outcome

(e.g. the knee adduction torque). Design of patient-specific

gait modifications to minimize both knee adduction torque

peaks is a recent successful example (Fregly et al. 2007).

When changes in neural control are permitted, some type

of novel real-time feedback system may be necessary to

help patients adapt their gait to the predicted optimal gait

patterns.

In conclusion, this study has demonstrated that a

patient-specific cost function combined with a patient-

specific gait model can be used to predict clinically

significant gait characteristics under conditions for which

experimental data are not available. Though the approach

was evaluated with a single patient, demonstration of

feasibility is a critical first step toward application to a

larger number of patients. While a different cost function

formulation will likely improve the predictive capabilities

of the approach, the current results suggest that patient-

specific musculoskeletal models may soon permit

rehabilitation and surgical treatments to be designed and

optimized on an individual patient basis, at least for a

limited set of clinically important conditions.
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