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Are Patient-Specific Joint and Inertial Parameters
Necessary for Accurate Inverse Dynamics

Analyses of Gait?
Jeffrey A. Reinbolt, Raphael T. Haftka, Terese L. Chmielewski, and Benjamin J. Fregly*

Abstract—Variations in joint parameter (JP) values (axis posi-
tions and orientations in body segments) and inertial parameter
(IP) values (segment masses, mass centers, and moments of in-
ertia) as well as kinematic noise alter the results of inverse dy-
namics analyses of gait. Three-dimensional linkage models with
joint constraints have been proposed as one way to minimize the ef-
fects of noisy kinematic data. Such models can also be used to per-
form gait optimizations to predict post-treatment function given
pre-treatment gait data. This study evaluates whether accurate pa-
tient-specific JP and IP values are needed in three-dimensional
linkage models to produce accurate inverse dynamics results for
gait. The study was performed in two stages. First, we used op-
timization analyses to evaluate whether patient-specific JP and IP
values can be calibrated accurately from noisy kinematic data, and
second, we used Monte Carlo analyses to evaluate how errors in
JP and IP values affect inverse dynamics calculations. Both stages
were performed using a dynamic, 27 degrees-of-freedom, full-body
linkage model and synthetic (i.e., computer generated) gait data
corresponding to a nominal experimental gait motion. In general,
JP but not IP values could be found accurately from noisy kine-
matic data. Root-mean-square (RMS) errors were 3 and 4 mm
for JP values and 1 kg, 22 mm, and 74 500 kg mm2 for IP values.
Furthermore, errors in JP but not IP values had a significant effect
on calculated lower-extremity inverse dynamics joint torques. The
worst RMS torque error averaged 4% bodyweight height (BW

H) due to JP variations but less than 0.25% (BW H) due to IP
variations. These results suggest that inverse dynamics analyses of
gait utilizing linkage models with joint constraints should calibrate
the model’s JP values to obtain accurate joint torques.
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I. INTRODUCTION

“ONE of the most valuable biomechanical variables to have
for the assessment of any human movement is the time
history of the moments of force at each joint” [1]. There

are countless applications involving the investigation of human
movement ranging from sports medicine to pathological gait. In
all cases, the net torque at a particular joint is the result of several
factors: muscle forces, muscle moment arms, ligament forces,
contact forces due to articular surface geometry, positions and
orientations of axes of rotation, and inertial properties of body
segments. Assuming that ligament forces are insignificant and
that articular contact forces act through the joint center leads to
the common simplification that muscles generate the entire joint
torque [2]. Individual muscle forces can then be estimated from
resultant joint torques computed by inverse dynamics analyses.
In the end, inverse dynamics computations depend upon the
chosen model parameters, namely body segmental joint param-
eters (JPs) (joint positions and orientations) and inertial param-
eters (IPs) (masses, mass centers, and moments of inertia). If the
specified parameter values do not match the patient’s anatomy
and mass distribution, then the predicted gait motions and loads
may not be indicative of the clinical situation.

The literature contains a variety of methods to estimate JP
and IP values on a patient-specific basis. Anatomic landmark
methods estimate parameter values using scaling rules devel-
oped from cadaver studies [3]–[6]. In contrast, optimization
methods adjust parameter values to minimize errors between
model predictions and experimental measurements. Optimiza-
tions identifying JP values for 3-D multijoint kinematic models
have a high computational cost [7], [8]. Optimizations identi-
fying IP values, but not JP values, have been performed with
limited success for planar models of running, jumping, and
kicking motions [9].

The literature also contains a variety of studies investigating
the sensitivity of inverse dynamics torques to JP and IP values.
Challis and Kerwin [2] analyzed the sensitivity of two elbow
joint torques to variations in JP and IP values. They used varia-
tions consistent with their estimated uncertainties of 10 mm for
joint centers and 10% for inertial properties. Holden and Stan-
hope [10] evaluated the sensitivity of the knee flexion-extension
torque to changes in knee center location for multiple walking
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speeds. They chose variations of 10 mm in the anterior-pos-
terior direction. Pearsall and Costigan [11] used a planar leg
model to study the sensitivity of hip forces and torques to iner-
tial property variations of 40%. In contrast, Stagni et al. [12]
studied the sensitivity of hip torques to variations in hip joint
center location of 30 mm. Andrews and Mish [13] analyzed
knee forces and torques using a planar harmonic oscillating mo-
tion with inertial properties variations of 5%. Directly related
to knee torque, Della Croce et al. [14] investigated how knee
kinematics change when the rotation axes are varied by .
No studies have investigated how errors in JP and IP values to-
gether affect inverse dynamics joint torque calculations for gait
performed using three-dimensional linkage models.

This study evaluates whether patient-specific JP and IP values
are needed to obtain accurate inverse dynamics results for gait
using linkage models with joint constraints. We performed the
evaluation using a two-stage process. In the first stage, we used
optimization analyses to evaluate whether accurate JP and IP
values can be found from noisy kinematic movement data. In the
second stage, we used Monte Carlo analyses to evaluate whether
accurate JP and IP values are needed to obtain accurate inverse
dynamics results for gait. While the first stage calibrates both
the configuration and mass distribution of the model segments
to a patient’s movement data, the second stage determines the
effect of the model’s structure on internal joint torques. Both
stages utilized a 3-D, 27 degrees-of-freedom (DOF), full-body
gait model possessing 98 JPs and 84 IPs, along with synthetic
(i.e., computer generated) gait and isolated joint motion data.

II. METHODS

A. Linkage Model With Joint Constraints

We used a full-body dynamic linkage model of gait for our
investigation [7]. The equations of motion for the 3-D, 27 DOF
model (Fig. 1) were derived using the Autolev symbolic manip-
ulation software (OnLine Dynamics, Sunnyvale, CA). Compa-
rable to Anderson and Pandy’s [15] model structure, three trans-
lational and three rotational DOFs express the movement of the
pelvis in a Newtonian reference frame. The remaining 13 seg-
ments comprise four open chains branching from the pelvis. The
positions and orientations of joint axes within adjacent segment
coordinate systems are defined by unique JPs. For example, the
knee joint axis is simultaneously established in the femoral and
tibial coordinate systems. These parameters are used to desig-
nate the geometry of the following joint types: three DOF hip,
one DOF knee (with internal reaction torque calculated for ab-
duction), two DOF ankle (nonintersecting axes [16]), three DOF
back, two DOF shoulder, and one DOF elbow. Each joint type
represents the primary in vivo motions of the joint. Anatomic
landmark methods were used to estimate nominal values for 6
hip [3], 9 knee [5], and 12 ankle [4] JPs. The segment masses,
mass centers, and moments of inertia were described by unique
IPs. Anatomic landmark methods were used to estimate nom-
inal values for 7 IPs per segment [6].

Parameters defining the structure of the model were refer-
enced to local (i.e., segment fixed) coordinate systems created
using OrthoTrak conventions and a static motion capture trial
(Motion Analysis Corporation, Santa Rosa, CA). Markers

Fig. 1. Schematic of the 3-D, 14 segment, 27 DOF full-body kinematic linkage
model with joint constraints.

placed over the left anterior superior iliac spine (ASIS), right
ASIS, and superior sacrum were used to define the pelvis seg-
ment coordinate system. From percentages of the inter-ASIS
distance, a nominal hip joint center location was estimated
within the pelvis segment [3]. This nominal joint center served
as the origin of the femoral coordinate system, which was
subsequently defined using markers placed over the medial
and lateral femoral epicondyles. The tibial coordinate system
originated at the midpoint of the knee markers and was de-
fined by additional markers located on the medial and lateral
malleoli. The talus coordinate system was created according to
the conventions of Bogert et al. [16], with the longitudinal axis
extending along the line perpendicular to both the talocrural and
subtalar joint axis. The heel and toe markers, in combination
with the tibial superior-inferior axis, defined the foot coordinate
system.

B. Experimental and Synthetic Movement Data

Experimental kinematic and kinetic data were collected from
a single subject (male, 69.4 kg, 170 cm) using a video-based
motion analysis system (Motion Analysis Corporation, Santa
Rosa, CA) and two force plates (AMTI, Watertown, MA). Insti-
tutional review board approval and informed consent were ob-
tained prior to the experiments. As described above, segment
coordinate systems were created from surface marker locations
measured during a static standing pose. Unloaded isolated joint
motion trials were performed to exercise the primary functional
axes of each lower extremity joint (hip, knee, and ankle on each
side [7]). For each joint, the subject was instructed to move the
distal segment within the physiological range of motion so as
to exercise all DOFs of the joint. Three trials were done for
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Fig. 2. Flow chart describing the first stage evaluation process using a series of optimization analyses to identify joint (phase 1) and inertial (phase 2) parameter
values. To determine a patient-specific model, experimental movement data were collected for isolated joint and full-body gait motions. For phase 1, isolated joint
motion data were used to identify JP values for non-weight bearing conditions. Subsequently, gait motion data were used to identify a subset of JP values for weight
bearing conditions. For phase 2, optimal JP values and gait motion data were used to identify IP values. In the end, the patient-specific model may be used for
dynamic simulations. As a result of the modeling process, known JP and IP values and synthetic motion data comprise a perfect model and data set. To simulate
skin and soft tissue movement artifacts, continuous random numerical noise was added to synthetic motion data. The synthetic motion date was used as input data
for the two-phase process to evaluate the ability to recover the original marker trajectories and model parameter values.

each joint with all trials performed unloaded. Multiple cycles
of standing hip flexion-extension followed by abduction-adduc-
tion were recorded. Similar to Leardini et al. [17], internal-ex-
ternal rotation of the hip was avoided to reduce skin and soft
tissue movement artifacts. Multiple cycles of knee flexion-ex-
tension were measured. Finally, multiple cycles of simultaneous
ankle plantarflexion-dorsiflexion and inversion-eversion were
recorded. Gait motion and ground reaction data were collected
to investigate simultaneous motion of all lower extremity joints
under load-bearing physiological conditions.

To evaluate the proposed optimization methodology, we gen-
erated two types of synthetic movement data from the exper-
imental data sets. The first type was noiseless synthetic data
generated by moving the model through motions representa-
tive of the isolated joint and gait experiments. By using known
JP and IP values and joint motions from the patient, the model
with corresponding virtual markers allowed the computation of
synthetic marker trajectories and ground reactions that are not
contaminated with noise (Fig. 2: perfect model and data). The
second type was synthetic data with superimposed numerical
noise to simulate skin and soft tissue movement artifacts. The
relative movement between skin and underlying bone occurs
in a continuous rather than a random fashion [18]. Comparable
to the simulated skin movement artifacts of Lu and O’Connor
[19], a continuous noise model of the form was

used with the following uniform random parameter values: am-
plitude , frequency , and
phase angle [20]. Noise was generated separately
for each 3-D coordinate of the marker trajectories and superim-
posed on the noiseless trajectories.

C. Two-Stage Evaluation Process

We used a two-stage process to evaluate the importance of
having accurate patient-specific JP and IP values for obtaining
accurate inverse dynamics results of gait. For the first stage, we
performed a series of optimization analyses using Matlab’s non-
linear least squares algorithm (The Mathworks, Natick, MA)
to determine how kinematic noise affects our ability to recover
known JP and IP values. To evaluate our ability to recover ac-
curate JP values, we performed optimizations that adjusted JP
values and model motion to minimize errors between model
and experimental (or synthetic) marker locations ((1), Fig. 2:
phase 1). For isolated joint motion trials, the design variables
were 6 hip, 9 knee, or 12 ankle JP values along with 540
quintic B-spline nodes parameterizing the generalized coor-
dinate trajectories (20 nodes per DOF [21]). This formulation,
which varies JP and motion design variables simultaneously in
a single optimization, is different from our previous nested (or
two-level) optimization methodology that separated the JP and
motion design variables [7], [8]. For the gait trial, the number of
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JPs was reduced to 4 hip, 9 knee, and 4 ankle due to inaccuracies
in determining joint functional axes with rotations less than 25
[22]. For axes not identified using the gait trial, the JP values
were set to the optimal values obtained from the isolated joint
trial optimizations. The initial value for each B-spline node and
JP value was chosen to be zero to test the robustness of the op-
timization approach. The JP cost function minimized the
errors between model and experimental marker loca-
tions for each of the three marker coordinates over markers
and time frames

(1)

To evaluate our ability to obtain accurate IP values, we
performed optimizations that adjusted IP values to mini-
mize the residual forces and torques acting on the 6 DOF
ground-to-pelvis joint ((2), Fig. 2: phase 2). Only the gait trial
was used in these optimizations. The design variables were a
reduced set of 36 IPs ( —7 masses, 8 mass centers, and 21
moments of inertia) accounting for body symmetry and limited
joint ranges of motion during gait. The initial seed for each IP
value was the nominal value or a randomly altered value within

50% of nominal. The IP cost function utilized a combi-
nation of pelvis residual loads ( and ) calculated over all
time frames and differences between initial and current

IP values. The tracking of initial IP values was necessary
to prevent unrealistic results (e.g., negative masses). IP differ-
ences were normalized by their respective initial values
to create nondimensional errors. The residual pelvis forces
were normalized by body weight and the residual pelvis
torques by body weight times height . Once an
IP optimization converged, the final IP values were used as the
initial guess for a subsequent IP optimization, with this process
being repeated until the resulting root-mean-square (RMS)
pelvis residual loads converged.

(2)

The JP and IP optimization procedures were applied to all
three data sets (i.e., synthetic data without noise, synthetic data
with noise, and experimental data) (Fig. 2). For isolated joint
motion trials, JPs for each joint were determined through sepa-
rate optimizations. For comparison, JPs for all three joints were
determined simultaneously for the gait trial. Subsequently, IPs
were determined for the gait trial using the previously found op-
timal JP values. RMS errors between original and recovered pa-
rameters, marker distances, and pelvis residual loads were used
to quantify the procedure’s performance. All optimizations were
performed on a 3.4 GHz Pentium 4 PC.

For the second stage, we performed two sets of Monte Carlo
analyses to separate the effects of model parameter errors
from the effects of kinematic noise on the calculated inverse
dynamics joint torques. For the first set, we used synthetic gait

data without noise and variable JP and IP values, while for
the second set, we used synthetic gait data with variable noise
parameter (NP) amplitude but correct JP and IP values.

The first set of Monte Carlo analyses involved repeated
inverse dynamics analyses using variations of JP and IP values,
together or separately, within 25%, 50%, 75%, and 100% of
their allowable bounds. Each JP and IP value normally found
via optimization was selected from a uniform distribution of
pseudorandom numbers [23] using bounds consistent with
previous studies. Joint center locations were bounded by a
maximum of 10 mm [2], [10]. Joint axis orientations were
bounded by a maximum of [14]. Inertial properties were
bounded by a maximum of 10% of their original values [2].
New model motions were determined by minimizing coordinate
errors between model and synthetic marker trajectories [7]. We
used 5000 instantiations to ensure convergence of the inverse
dynamics torque values. The mean and coefficient of variance
100 SD mean of all joint torques were within 2% of the

final mean and coefficient of variance, respectively, for the last
10% of instantiations [23], [24].

The second set of Monte Carlo analyses involved repeated
inverse dynamics analyses using variations of NP values within
25%, 50%, 75%, and 100% of their allowable bounds. The NP
values represent the amplitude of simulated skin movement arti-
facts. The relative movement between skin and underlying bone
occurs in a continuous rather than a random fashion [18]. Conse-
quently, we used a previously published continuous noise model
of the form with the following uniform random
parameter values: amplitude , frequency

, and phase angle [20].
Noise was generated separately for each 3-D coordinate of the
marker trajectories. By finding joint torque and marker distance
errors as a function of NP variations, we can use the experimen-
tally determined marker distance errors from the first stage to
estimate the joint torque errors that occur experimentally.

For all Monte Carlo analyses, we summarized the distribu-
tions of mean inverse dynamics results using boxplots [23].
Each boxplot presented five sample statistics: the minimum
(or 10th percentile), the lower quartile (or 25th percentile),
the median (or 50th percentile), the upper quartile (or 75th
percentile) and the maximum (or 90th percentile). All joint
torque and marker distance (i.e., distance between model and
synthetic marker locations) error results were reported for the
left leg of the model.

III. RESULTS

For the first stage, noisy kinematic data did not limit our
ability to determine accurate JP values (Table I). Each JP opti-
mization using noiseless synthetic data precisely recovered the
original marker trajectories and model parameters to within an
arbitrarily tight convergence tolerance. For the synthetic with
noise and experimental data sets, RMS marker distance errors
were at most 7 mm (synthetic with noise) and 4 mm (experi-
mental), which are of the same order of magnitude as the am-
plitude of the continuous noise model. The maximum marker
distance errors were 13 mm (synthetic with noise) and 29 mm
(experimental), both for the anterior superior iliac spine markers
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TABLE I
SUMMARY OF RMS JP AND MARKER DISTANCE ERRORS PRODUCED BY THE PHASE ONE OPTIMIZATIONS AND ANATOMIC LANDMARK METHODS FOR THREE

TYPES OF MOVEMENT DATA

of the pelvis segment during the isolated hip motion trials. JP
values found via optimization of synthetic data with noise were
close to those (e.g., original anatomic landmark values used
to generate synthetic data) found via optimization of synthetic
data without noise (Table II). However, for experimental data,
JP values found via optimization were markedly different from
those found using anatomic landmark methods. Optimizations
involving the isolated joint trial data sets (i.e., 1200 time frames
of data) required between 108 and 380 seconds of CPU time
while the gait trial data set (i.e., 208 time frames of data) re-
quired between 70 and 100 seconds of CPU time. These com-
putation times were orders of magnitude faster than those using
a previously reported two-level optimization procedure [7].

In contrast, noisy kinematic data was a limiting factor for
determining accurate IP values (Table III). Each IP optimiza-
tion using noiseless synthetic data produced zero pelvis residual
loads and recovered the original IP values to within an arbi-
trarily tight convergence tolerance. For the synthetic with noise
and experimental data sets, pelvis residual loads and IP errors
remained small, with a random initial seed producing nearly
the same pelvis residual loads but slightly higher IP errors than
when the correct initial seed was used. IP values found via opti-
mization of synthetic data with noise were different from those
(e.g., original anatomic landmark values used to generate syn-
thetic data) found via optimization of synthetic data without
noise (Table IV). In contrast, for experimental data, IP values
found via optimization were close to those found using anatomic
landmark methods. These results are the opposite of what was
found for the JPs. Required CPU time ranged from 11 to 48 sec-
onds.

For the second stage, variations in JP values had a large effect
on joint torque and marker distance errors while variations in
IP values had little effect (Figs. 3 and 4, first three columns).
Furthermore, errors due to simultaneous variation of JP and IP

values were no worse than those due to variations in JP values
alone, indicating the lack of any significant interaction. For joint
torques, RMS errors (Fig. 3) tended to be larger than mean errors
(Fig. 4), indicating that the errors were due more to changes in
curve shape than in curve offset. For marker distances, RMS and
mean errors were of comparable magnitudes.

The influence of JP variations on joint torque errors in-
creased as the inverse dynamics calculations moved proximally
(Figs. 3 and 4, first column). For the ankle, joint torque errors
were slightly larger for inversion-eversion than for plan-
tarflexion-dorsiflexion. Similarly for the knee, torque errors
were slightly larger for abduction-adduction than for flexion-ex-
tension. Unlike the other two joints, hip torque errors varied
widely with direction, with flexion-extension being much worse
than the other two directions. The hip adduction torque errors
were unique in that large RMS errors had corresponding small
mean errors.

Compared to JP variations, NP variations in the Monte Carlo
analyses had only a small effect on joint torque errors and a
moderate effect on marker distance errors (Figs. 3 and 4, last
column). Both types of errors increased with increasing noise
amplitude. For torques, RMS errors (Fig. 3) were larger than
mean errors (Fig. 4), while for marker distances, both errors
were of comparable magnitude. Though the joint torque errors
again increased from distal to proximal, similar to JP variations,
the magnitudes of the errors were small.

IV. DISCUSSION

This study evaluated how errors in JP and IP values affect in-
verse dynamics calculations performed using a gait model with
joint constraints and noisy kinematic data. Using optimization
and Monte Carlo analyses, we found that first, accurate JP but
not IPs could be recovered from noisy kinematic data for joint
motion and gait trials, and second, accurate joint but not IPs
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TABLE II
DIFFERENCES BETWEEN JPS (I.E., KINEMATIC STRUCTURE PROPERTIES USED TO GENERATE SYNTHETIC DATA) PREDICTED BY ANATOMICAL LANDMARK

METHODS AND PHASE ONE OPTIMIZATIONS. BODY SEGMENT INDICATES THE SEGMENT IN WHICH THE ASSOCIATED JP IS FIXED

TABLE III
SUMMARY OF RMS IP AND PELVIS RESIDUAL LOAD ERRORS PRODUCED BY THE PHASE TWO OPTIMIZATIONS AND ANATOMIC LANDMARK METHODS FOR

THREE TYPES OF MOVEMENT DATA

are needed to obtain accurate inverse dynamics results for gait.
These findings are dependent in part on the amplitude and char-
acteristics of the synthetic kinematic noise used in our study.
Experimental skin and soft tissue artifacts may be quite dif-
ferent from our simulated noise. Our conclusions may not be

true for ballistic movements involving high accelerations, such
as jumping or throwing. Overall, our results suggest that it is
worth the time and effort to find patient-specific JP values via
optimization, while it is not worth the effort to use optimization
to find patient-specific IP values.
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TABLE IV
DIFFERENCES BETWEEN IPS (I.E., MASS DISTRIBUTION PROPERTIES USED TO GENERATE SYNTHETIC DATA) PREDICTED BY ANATOMICAL LANDMARK METHODS

AND PHASE TWO OPTIMIZATIONS. BODY SEGMENT INDICATES THE SEGMENT IN WHICH THE ASSOCIATED IP IS FIXED

For the first stage of this study, we cannot claim that models
fitted with the optimization approach will reproduce the actual
functional axes and inertial properties of the patient. The results
of the synthetic data with noise, where the RMS errors in the
recovered parameter values were not zero, suggest this conclu-
sion. At the same time, the optimized parameter values corre-
sponded to a lower cost function value in each case than did the
“correct” parameter values from which the synthetic data were
generated. Thus, we can only claim that the optimized model
structure provides the best possible fit to the imperfect kinematic
data.

A modification to our optimization methodology is the
choice of scale factors, or weights, used in the IP optimization

cost function (2). By normalizing residual pelvis torques by
the additional height term, 41% less weight is placed on the
residual pelvis torques compared to forces. As a result, the
reported pelvis residual torque (13 Nm) is relatively large
compared to the force (28 N). The cost function has sufficient
flexibility to tailor the weights in order to achieve a desired
magnitude of residual loads. For example, one may choose
to normalize torque values by (pelvic width) to place
more importance on torque residuals. We have implemented
this scale factors and found little change in the resulting pelvis
residual forces (27 N) and torques (12 Nm). By placing more
numerical emphasis on the torques, there was a decrease in
both residual forces and torques because the tracking of IP
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Fig. 3. Boxplots comparing RMS errors in leg joint torques and marker distances. First column contains distributions from varying only JPs. Second column
contains distributions from varying only IPs. Third column contains distributions from varying both JPs and IPs. Fourth column contains distributions from varying
only the noise amplitude parameter (NP).



790 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 54, NO. 5, MAY 2007

Fig. 4. Boxplots comparing mean errors in leg joint torques and marker distances. Columns are the same as in Fig. 3.

parameter values had relatively less importance within the cost
function. In the extreme case of scaling residual pelvis torques
by (1 mm), the results were 32 N and 7 Nm for residual

pelvis loads. As one might expect, the weighting of the third
term in the cost funciton also affects final results for the first
two terms. Although we have normalized by a certain set of
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scale factors (i.e., weights customary for dimensionless kinetic
data), a different set of scale factors may be required for a given
convergence criteria.

Another modification to our optimization methodology is
the addition of a third optimization step that varies JP and IP
values simultaneously. We have implemented this approach
on the nominal gait data set used in this study. We found that
small additional variations in JP and IP values can produce
large reductions in residual forces and torques at the pelvis. For
the present gait data set, RMS errors in pelvis residual forces
and torques fell from 28 to 15 N and 13 to 5 Nm, respectively.
These reduced pelvis residual loads are much closer to the
synthetic with noise case than before implementation of the
third optimization step. This agreement suggests the remaining
residuals are due to the adopted approach and kinematic noise
rather than rigid body modeling assumptions (e.g., single seg-
ment trunk). The third optimization step is reasonable if there is
more confidence in the kinetic data compared to the kinematic
data. By definition, the JP optimization alone finds the best
fit to noisy kinematic data. Understandably, any subsequent
changes would mean a lesser fit to the noisy kinematic data.
In other words, the kinematic fit is worse in terms of marker
distance error, but it may or may not be worse in terms of
the true kinematics of the patient. The kinetic data can be
used as a supplement to the noisy kinematic data in the fitting
process. Caution must be exercised to prevent this third step
from overcorrecting JP and IP values to account for incorrect
assumptions about model structure.

The JP optimizations determined patient-specific JP values
similar to those reported in previous studies. The optimal hip
joint center location of 2.94 cm (12.01% posterior), 9.21 cm
(37.63% inferior), and 9.09 cm (37.10% lateral) is comparable
to 19.30%, 30.40%, and 35.90%, respectively, of the inter-ASIS
distance [3]. The optimal femur length (42.23 cm) and tibia
length (38.33 cm) are similar to 41.98 cm and 37.74 cm, re-
spectively [6]. The optimal coronal plane rotation (87 ) of the
talocrural joint correlates to 82.7 3.7 (range 74 to 94 ) [5].
The optimal distance (0.58 cm) between the talocrural joint and
subtalar joint is analogous to 1.24 0.29 cm [16]. The optimal
transverse plane rotation (35 ) and sagittal plane rotation (31 )
of the subtalar joint are not far outside one standard deviation,
but within the recorded ranges, of 23 11 (range 4 to 47 )
and 42 9 (range 20.5 to 68.5 ), respectively [5]. Compared
to anatomic landmark methods reported in the literature, the JP
optimization reduced RMS marker distance errors by 17% (hip),
52% (knee), 68% (ankle), and 34% (full leg).

The IP optimization also determined patient-specific IP
values that were similar to previous studies. The optimal
masses were within an average of 1.99% (range 0.078% to
8.51%), centers of mass within 1.58% (0.047% to 5.84%), and
moments of inertia within 0.99% (0.0038% to 5.09%) of the
nominal values [6]. Compared to anatomic landmark methods
reported in the literature, the IP optimization reduced RMS
pelvis residual loads by 20% (forces) and 8% (torques). When
JP and IP parameter values were varied simultaneously, the
reductions were 57% (forces) and 64% (torques) compared to
anatomical landmark methods.

Two conclusions may be drawn from these comparisons.
First, the similarities suggest the results are reasonable given
the extent of agreement with past studies. Second, the differ-
ences between values indicate the extent to which calibration
of model parameter values to the patient’s movement data via
optimization would change their values compared to anatomic
landmark methods. Such changes can significantly affect the
calculated inverse dynamics joint torques. For example, use of
JP values from anatomical landmark rather than optimization
methods leads to an RMS knee adduction torque error of more
than 0.4 . In all cases, the JP and IP optimizations
successfully reduced cost function values for marker distance
errors and pelvis residual loads, respectively, below those
resulting from anatomic landmark methods.

For the second stage of this study, the output distributions
from the Monte Carlo analyses may have been overestimated.
This limitation is the same for any Monte Carlo analysis that as-
sumes parameter independence and uniform distributions. We
made these assumptions since we had no prior knowledge of
the correlation between or in vivo distribution of the various JP
and IP values. Consequently, we may have simulated a more
diverse assortment of full-body models than would occur in re-
ality. Given the true parameter correlations and distributions,
the reported errors would only be reduced. Our results there-
fore provide a conservative estimate of which categories of pa-
rameters are important to calibrate for obtaining accurate joint
torques.

Our Monte Carlo results also depend on the selected param-
eter value bounds. We chose bounds consistent with previous
studies [2], [10], [14]. Understandably, the resulting distribu-
tions would have been larger if we had used larger JP variations
of 30 mm [12] and IP variations of 40% [11]. However,
these larger parameter value variations would have been in-
consistent with the parameter value uncertainties determined
from our optimization analyses in the first stage (closer to

10 mm and 10%), making it difficult to combine results
from our two stages to approximate joint torque errors that
occur experimentally. In addition, using 40% variations in
IP values, Pearsall and Costigan [11] reported small absolute
changes (generally less than 0.05 Nm/kg) for joint torques.
These changes may be smaller than the errors due to marker
placement, skin and soft tissue movement, and equipment
accuracy [25]. In the event of an imbalance between JP and IP
value ranges, we performed an additional Monte Carlo analysis
with IP variations of 50%. For this case, the largest mean
RMS error for hip flexion torqueincreased to a magnitude of
0.31 (or 0.53 %BW), which corresponds well with
Pearsall and Costigan’s [11] results of less than 1 %BW. Even
for extremely large ranges, IP variations have little influence on
calculated joint torques during gait.

Noise parameter value variations in the Monte Carlo analyses
did not have as large an influence on calculated joint torques as
expected. There are two possible explanations for this finding.
First, given that the correct JP values were used, noise added to
the synthetic marker coordinate data had a limited effect on the
model pose for any particular time frame. Moreover, by opti-
mizing the model motion over all time frames simultaneously,
our procedure smoothes out the effects of kinematic noise.
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These observations were a motivating factor for using a linkage
model with joint constraints to analyze noisy kinematic data
[19]. Second, nominal joint torque data for error analysis was
generated by a linkage model consistent with our model’s joint
definitions. However, we do not expect our results to change
significantly if small secondary motions were added to the
joints, since our optimization approach minimizes secondary
motions away from the primary functional axes, similar to a
principal component analysis.

The Monte Carlo analyses determined joint torque errors
consistent with sensitivity results of previous studies. The hip
flexion-extension torque showed the largest RMS error (mean
4.14 % ) comparable to the
propagated error mean of 1.29 to 1.57 from Stagni
et al. [12]. The hip abduction-adduction torque had the second
largest RMS error (mean 1.06 ) analogous to the
propagated error mean of 1.28 to 1.48 from Stagni
et al. [12]. The knee flexion-extension torque mean RMS
error of 0.92 is similar to the peak 0.71
reported by Holden and Stanhope [10]. Pearsall and Costigan
[11] found IP value variations affected joint torques by less
than 1 %BW (equivalent to 0.59 for our subject),
which corresponds to our results.

There are several differences between our Monte Carlo
analyses and other sensitivity studies involving JPs and IPs
for inverse dynamics analyses. One study [2] separately evalu-
ated both JPs and IPs, while others examined either JPs [10],
[12], [14] or IPs [11], [13], [26], [27]. Our study assessed the
contribution of JPs and IPs both together and separately. The
current work investigated sensitivities during gait, but Challis
and Kerwin [2] used an elbow flexion motion. Although some
studies [2], [10], [12] considered a localized body region or
single joint, this study included a multijoint linkage model of
the entire body. None of the above mentioned studies performed
Monte Carlo analyses to determine sensitivities of joint torques
to JP and IP values.

The Monte Carlo results can be used to estimate the mag-
nitude of joint torque errors one might expect to observe ex-
perimentally. Joint torque errors are caused primarily by mod-
eling errors (and in particular JP errors) and kinematic noise.
From analysis of experimental gait data in the first stage, RMS
marker distance errors can be as low as 4 mm using optimized
JPs and 6 mm using JPs from anatomical landmark methods.
In a previous study using lower quality kinematic data, we ob-
tained RMS marker distance errors of 8 mm and 14 mm, re-
spectively, using similar approaches. Based on the Monte Carlo
results (Fig. 3), 4 mm of marker distance error corresponds to
less than 25% variation in JP values and 50% variation in NP
amplitude, while 14 mm of error corresponds to 50% variation
in JP values and more than 100% variation in NP amplitude. By
adding the corresponding torque errors from the appropriate JP
and NP columns, one can estimate the total torque error for a
particular situation. For example, for our current gait data with
only 4 mm of RMS marker distance error, the RMS error in the
knee adduction torque was less than 0.1 .

The physical significance of our findings is of relevance to
clinical and experimental biomechanists. For example, if the
model does not match the patient, then the inverse and forward

dynamic simulation results may not be representative of the
clinical situation. Understandably, a model constructed of rigid
links within a multilink chain and simple mechanical approxi-
mations of joints will not precisely match a patient’s anatomy
and function. However, the best possible agreement to experi-
mental motion data should be made within the bounds of the
chosen dynamic model. Within the context of our study, the ac-
curacy of dynamic analyses made for a particular patient is de-
termined in part by the fitness of the JP and IP values. Without
expensive medical images, model parameter values are typically
estimated from external landmarks that have been identified in
previous studies. The estimated values may be improved by for-
mulating an optimization problem using motion-capture data.
By using a multiphase optimization technique, researchers may
build more accurate biomechanical models of the individual
human structure. As a result, the optimal models will provide re-
liable foundations for future patient-specific dynamic analyses
and optimizations of gait.
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