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Abstract

Neuromusculoskeletal disorders affecting walking ability are often difficult to manage, in part

due to limited understanding of how a patient’s lower extremity muscle excitations contribute

to the patient’s lower extremity joint moments. To assist in the study of these disorders,

researchers have developed electromyography (EMG) driven neuromusculoskeletal models

utilizing scaled generic musculoskeletal geometry. While these models can predict individual

muscle contributions to lower extremity joint moments during walking, the accuracy of the

predictions can be hindered by errors in the scaled geometry. This study presents a novel

EMG-driven modeling method that automatically adjusts surrogate representations of the

patient’s musculoskeletal geometry to improve prediction of lower extremity joint moments

during walking. In addition to commonly adjusted neuromusculoskeletal model parameters,

the proposed method adjusts model parameters defining muscle-tendon lengths, velocities,

and moment arms. We evaluated our EMG-driven modeling method using data collected

from a high-functioning hemiparetic subject walking on an instrumented treadmill at speeds

ranging from 0.4 to 0.8 m/s. EMG-driven model parameter values were calibrated to match

inverse dynamic moments for five degrees of freedom in each leg while keeping musculo-

skeletal geometry close to that of an initial scaled musculoskeletal model. We found that our

EMG-driven modeling method incorporating automated adjustment of musculoskeletal

geometry predicted net joint moments during walking more accurately than did the same

method without geometric adjustments. Geometric adjustments improved moment prediction

errors by 25% on average and up to 52%, with the largest improvements occurring at the hip.

Predicted adjustments to musculoskeletal geometry were comparable to errors reported in

the literature between scaled generic geometric models and measurements made from imag-

ing data. Our results demonstrate that with appropriate experimental data, joint moment pre-

dictions for walking generated by an EMG-driven model can be improved significantly when

automated adjustment of musculoskeletal geometry is included in the model calibration

process.
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Introduction

Neuromusculoskeletal disorders such as cerebral palsy [1], stroke [2], Parkinson’s disease [3],

and osteoarthritis [4] hinder walking ability and decrease quality of life for millions of people.

Rehabilitation treatments have been developed to attempt to improve the walking ability of

individuals with these disorders. However, the effectiveness of these treatments can vary

between patients, in part due to the use of treatment design methods based more on subjective

than objective methods [5]. For instance, for medial knee osteoarthritis, recent studies using

instrumented knee implants found that gait modifications expected to reduced medial knee

contact force [6–8] did not always do so [9,10]. Similarly, stroke rehabilitation methods that

are effective for some patients may be ineffective for others [11]. Thus, treatment outcomes for

neuromusculoskeletal disorders could potentially be improved through the use of more objec-

tive treatment design methods.

To assist with the design of more effective interventions, researchers have developed neuro-

musculoskeletal models of individual patients. A major challenge in neuromusculoskeletal

modeling is determining how muscles contribute to net joint moments. Some studies have

used electromyography (EMG) data with [12–19] and without [20–24] geometric musculo-

skeletal models to estimate the joint moments generated by muscles during movement. When

geometric models are used, EMG-driven models predict net joint moments in three steps.

First, muscle activation is determined from EMG data using a first or second order activation

dynamics model [12,25]. Next, muscle force is determined from muscle activation and mus-

cle-tendon kinematics using Hill-type muscle models [26,27]. Finally, joint moments are

determined by combining estimated muscle forces with calculated muscle moment arms,

which requires geometric modeling of muscle-tendon origins, insertions, and lines of action

around bones and other muscles. To reproduce experimental joint moments as closely as pos-

sible, researchers calibrate parameter values in the activation dynamics (e.g., activation and

deactivation time constants, electromechanical delays) and Hill-type muscle (e.g., optimal

muscle fiber lengths, tendon slack lengths, peak isometric strengths) models using optimiza-

tion methods, where experimental joint moments are calculated via inverse dynamics assum-

ing no uncertainty in experimental inputs (i.e., ground reactions, marker motions) or skeletal

model parameter values (i.e., joint positions and orientations, segment mass properties)

[12,14–16,28,29]. In contrast to the use of optimization, muscle-tendon kinematic and muscle

moment arm information needed for the last two steps is typically provided by a scaled generic

musculoskeletal model. However, several studies have demonstrated that scaled models may

not represent the musculoskeletal geometry of individual subjects well [30–32]. Despite the

presence of errors in muscle-tendon kinematics and moment arms in scaled geometric mod-

els, no study to date has attempted to adjust these quantities automatically to improve the pre-

diction of net joint moments from EMG data.

This paper presents a novel EMG-driven modeling method that calibrates not only stan-

dard activation dynamics and muscle-tendon model parameter values but also non-standard

geometric musculoskeletal model parameter values related to muscle-tendon lengths and

moment arms to patient walking data. The method was developed and evaluated using instru-

mented treadmill walking data collected from a high-functioning hemiparetic subject walking

at five different speeds. Surrogate models of muscle-tendon length, velocity, and moment arms

for each muscle were fitted as functions of joint angles [33,34] to data sampled from a scaled

generic OpenSim [35] musculoskeletal model [36]. Surrogate model parameter values, along

with activation dynamics and Hill-type muscle-tendon model parameter values, were adjusted

via optimization such that lower extremity joint moments calculated from the subject’s EMG

data matched the subject’s inverse dynamic joint moments from walking as closely as possible.

Lower extremity EMG-driven modeling with automated adjustment of geometry
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Parameter values were adjusted for 35 muscles in each leg of the subject’s model to match the

hip flexion-extension (FE), hip adduction-abduction (AA), knee flexion-extension (FE), ankle

plantar-dorsiflexion (PDF), and ankle inversion-eversion (IE) moments during treadmill

walking. Calibrated EMG-driven models were evaluated by predicting joint moments for

walking trials withheld from calibration, including trials performed at faster non-calibration

walking speeds.

Methods

Experimental data

To support development and evaluation of our proposed EMG-driven modeling method, we

collected experimental walking data from a single high-functioning hemiparetic male subject

(age 79 years, LE Fugl-Meyer Motor Assessment 32/34 pts, right-sided hemiparesis, height 1.7

m, mass 80.5 kg). All experimental procedures were approved by the University of Florida

Health Science Center Institutional Review Board (IRB-01), and the subject provided written

informed consent prior to participation. Motion capture (Vicon Corp., Oxford, UK), ground

reaction (Bertec Corp., Columbus, OH), and EMG (Motion Lab Systems, Baton Rouge, LA)

data were collected simultaneously while the subject walked on a split-belt instrumented tread-

mill (Bertec Corp., Columbus, OH) at five different speeds: 0.4, 0.5, 0.6, 0.7, and 0.8 m/s which

included his preferred speed of 0.5 m/s. Motion capture data were recorded at a frequency of

100 Hz, and analog data were recorded at a frequency of 1000 Hz. More than 50 gait cycles

were recorded for each walking speed. A static standing trial was also collected. The motion

capture data were obtained using a modified Cleveland clinic marker set with additional mark-

ers added to the feet [37]. Ground reaction and marker motion data were filtered at a variable

cut-off frequency of 7/tf Hz, where tf is the period of the gait cycle being processed, using a

fourth-order zero phase lag Butterworth filter [38]. This variable cut-off frequency would

cause data collected at a normal walking speed to be filtered at approximately 6 Hz.

EMG data were collected and processed for 16 muscles in each leg. These data used a com-

bination of surface and fine-wire electrodes. Electrodes were placed following the SENIAM

convention for surface electrodes [39] and the Delagi et al. Anatomical Guide for the Electromyo-

grapher for fine wire electrodes [40]. Surface EMG data were collected for gluteus maximus and

medius, semimembranosus, biceps femoris long head, rectus femoris, vastus medialis and latera-

lis, medial gastrocnemius, tibialis anterior, peroneus longus, and soleus. Fine-wire EMG data

were collected for adductor longus, iliopsoas, tibialis posterior, flexor digitorum longus, and

extensor digitorum longus. EMG data were high-pass filtered at 40 Hz [12], demeaned, rectified,

and then low-pass filtered at a variable cut-off frequency 3.5/tf Hz. Filtering was performed using

a fourth-order zero phase lag Butterworth filter. EMG data from each muscle were normalized to

the maximum value over all trials and resampled to 101 time points per gait cycle while keeping

an additional 20 time points before the start of the cycle to permit modeling of electromechanical

delay. In addition, each processed EMG signal was offset on a cycle-by-cycle basis so that the min-

imum value was zero.

Model description

Our EMG-driven model uses a Hill-type muscle model with a rigid tendon [41] along with

automatically adjusted musculoskeletal geometry. However, the necessary muscle-tendon

lengths, velocities, and moment arms commonly obtained from a geometric musculoskeletal

model are instead approximated by polynomial functions of model generalized coordinates

and their first derivatives [33,34]. Each muscle’s moment about a spanned joint is represented
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by the following equation:

M ¼ r � FM
o � ½aðeðt � dÞÞ � f‘ð~‘MðtÞÞ � fvð~vMðtÞÞ þ fpð

~‘MðtÞÞ�cosa

0 < aðtÞ < 1

0:3 < ~‘MðtÞ < 1:3

� 1 < ~vMðtÞ < 1

ð1Þ

where M is the moment about a given joint produced by the muscle, r is the moment arm of

the muscle about the spanned joint, FM
o is the peak isometric force of the muscle, a is the mus-

cle’s activation which is a function of processed experimental EMG data e, t is time, d is an

electromechanical time delay, ~‘M and ~vM are the normalized muscle fiber length and velocity,

respectively, and α is the muscle pennation angle, which is assumed to remain constant to

facilitate subsequent calibration of musculoskeletal geometry. Neglecting tendon compliance,

~‘M and ~vM are calculated using the following equations:

~‘M ¼
‘

MT
� ‘

T
s

‘
M
o cosa

ð2Þ

~vM ¼
vMT

10 � ‘
M
o

ð3Þ

where ‘
MT

is muscle-tendon length, ‘
M
o is the optimal fiber length, ‘

T
s is the tendon slack length,

and vMT is muscle-tendon velocity. f‘ð~‘MðtÞÞ, fpð
~‘MðtÞÞ, and fvð~vMðtÞÞ represent the normalized

muscle active force-length, passive force-length, and force-velocity curves (Fig 1). In all, our

Hill-type muscle model requires specification of five parameter values d, ‘
M
o , ‘

T
s , FM

o , and α and

four time varying quantities a, ‘
MT

, vMT, and r. Methods for calculating these four time varying

quantities are described below.

Muscle activation is calculated using a first order differential equation that describes excita-

tion e to neural activation u dynamics and a nonlinear function that describes neural activation

u to muscle activation a [42]. Neural activation is calculated by solving the first order differen-

tial equation proposed by He et al. [25]:

duðtÞ
dt
¼ ðc1eðt � dÞ þ c2Þðeðt � dÞ � uðtÞÞ ð4Þ

where e(t−d) is excitation (i.e., processed EMG data) and u(t) is neural activation. The con-

stants c1 and c2 are defined as:

c1 ¼
1

tact
�

1

tdeact
ð5Þ

c2 ¼
1

tdeact
ð6Þ

where τact and τdeact are muscle activation and deactivation time constants, respectively. These

time constants are constrained to be proportional to each other such that τdeact = 4τact based

on the ratio commonly reported in the literature [27,43–45]. This linear differential equation

is solved recursively over all time frames by discretizing Eq (4) at each time point using a high

accuracy backward finite difference approximation, assuming neural activation at the first two

time points equals time-delayed muscle excitation at these time points, and solving for the
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unknown neural activation at the current time point:

ui ¼
2Dtðc1eðti � dÞ þ c2Þeðti � dÞ þ 4ui� 1 � ui� 2

2Dtðc1eðti � dÞ þ c2Þ þ 3
ð7Þ

where Δt is the selected time interval and i represents the time frame for which neural activa-

tion is to be found. The nonlinear relationship between neural activation u and muscle activa-

tion a at time frame i is modeled using the equation:

ai ¼ ð1 � c3Þui þ c3

g1

g2ðui þ g3Þ
g4 þ g5

þ 1

� �

ð8Þ

where c3 is a constant that can vary from 0 (linear) to 0.35 (highly nonlinear), and g1-g5 are val-

ues determined by fitting published experimental data from isometric contractions [42]. Con-

stant coefficients g1-g5 have values of -7.623, 29.280, 0.884, 17.227, and 4.108. This activation

nonlinearity equation is a simplified version of functions proposed previously [42].

The time varying quantities ‘
MT

, vMT, and r are calculated using polynomial functions of the

joint angles and velocities that share common coefficients [33,34]. For muscles that span a sin-

gle degree of freedom (DOF), the muscle-tendon length is approximated using the cubic poly-

nomial equation:

‘
MT
ðtÞ ¼ b0 þ b1yþ b2y

2
þ b3y

3
ð9Þ

where ‘
MT

is muscle-tendon length, θ is joint angle, and b0 through b3 are constant coefficients.

Muscle-tendon velocity vMT can then be calculated using the first derivative with respect to

time of Eq (9):

vMTðtÞ ¼
d‘MT

dt
¼ b1

_y þ 2b2y
_y þ 3b3y

2 _y ð10Þ

where _y is the joint angular velocity. Similarly, the muscle-tendon moment arm can be calcu-

lated from Eq (9) using a relationship from An et al. [46]:

rðtÞ ¼ �
@‘

MT

@y
¼ � b1 � 2b2y � 3b3y

2
ð11Þ

The negative sign in this expression is needed for consistency with the OpenSim

Fig 1. Relevant curves for our Hill-type muscle and activation nonlinearization model. Left: Normalized active, passive, and total force-length

curves. Middle: Normalized force-velocity curve. Right: Neural-to-muscle activation nonlinearization curves for minimum nonlinearization (curve

parameter = 0) and maximum nonlinearization (curve parameter = 0.35).

https://doi.org/10.1371/journal.pone.0179698.g001
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musculoskeletal modeling environment, where a positive joint moment causes a positive

change in joint angle. For muscles that span two DOFs, these equations are extended as fol-

lows:

‘
MT
¼ b0 þ b1y1 þ b2y2 þ b3y1y2 þ b4y

2

1
þ b5y

2

2
þ b6y

2

1
y2 þ b7y1y

2

2
þ b8y

3

1
þ b9y

3

2
ð12Þ

vMT ¼ b1
_y1 þ b2

_y2 þ b3ð
_y1y2 þ y1

_y2Þ þ 2b4y1
_y1 þ 2b5y2

_y2 þ . . .

b6ð2y1
_y1y2 þ y

2

1
_y2Þ þ b7ð

_y1y
2

2
þ 2y1y2

_y2Þ þ 3b8y
2

1
_y1 þ 3b9y

2

2
_y2

ð13Þ

r1 ¼ �
@‘

MT

@y1

¼ � b1 � b3y2 � 2b4y1 � 2b6y1y2 � b7y
2

2
� 3b8y

2

1
ð14Þ

r2 ¼ �
@‘

MT

@y2

¼ � b2 � b3y1 � 2b5y2 � b6y
2

1
� 2b7y1y2 � 3b9y

2

2
ð15Þ

For muscles that span three or four DOFs, Eqs (9), (10) and (11) are extended in a similar

manner by adding terms corresponding to the additional joint angles and velocities. These

polynomial functions can be viewed as surrogate models of muscle-tendon lengths, velocities,

and moment arms.

Model calibration

In our EMG-driven model calibration process, we start with a generic full-body OpenSim

musculoskeletal model [35]. The authors of that study created this initial model using mea-

surements made on 21 cadaveric specimens. Since the present study focuses on lower limb

motion during walking, the generic model was reduced to 29 DOFs by removing toes, forearm,

and wrist DOFs. The lower extremity joints were modeled as follows: the hips as ball-and-

socket joints, the knees as hinge joints (flexion/extension) with prescribed translations defined

as a function of knee rotation [47], and the ankles as two non-intersecting hinge joints. After

removal of muscles without related EMG signals, 35 muscles remained whose names, func-

tions, and excitation groups are listed in Table 1. Many of these muscles represented compart-

ments of larger muscles that were split to model their function more accurately. For instance,

gluteus maximus was split into three compartments modeled as individual muscles with a

common excitation signal.

The first step in our EMG-driven model calibration process was scaling of the generic mus-

culoskeletal model in OpenSim to match static trial marker data. Each segment’s scale factors

were based on the ratio of distances between markers placed over bony landmarks and dis-

tances between corresponding markers in the generic model. Symmetry was maintained

between the right and left sides of the body. The following segments were scaled: pelvis, torso,

upper arms, forearms, thighs, shanks, and feet.

Following scaling, the next step was calibration of lower extremity joint positions and ori-

entations and of marker positions within the body segments such that an OpenSim inverse

kinematics analysis matched measured marker locations during walking as closely as possible

[37,48]. This calibration step was performed in MATLAB (MathWorks, Natick, MA) via non-

linear least squares optimization and the OpenSim MATLAB application programming interface

[35] for performing repeated inverse kinematic analyses. A single representative walking trial at

0.5 m/s, the subject’s preferred walking speed, was used for this purpose. Distances between

pairs of markers within the same body segment were fixed during calibration. Joint positions

and orientations within the body segments were adjusted only for the lower extremities while

Lower extremity EMG-driven modeling with automated adjustment of geometry
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marker positions within the body segments were adjusted for all segments except the arms. Since

relocating joint centers causes segment lengths to change, the model geometry was rescaled

based on the new joint-to-joint distances. Model symmetry was maintained between the right

and left sides during this calibration step.

Given the scaled musculoskeletal model with calibrated joint parameters, the third step of

the calibration process was creation of surrogate models of muscle-tendon geometry using Eqs

(9–15) [33,34]. Each muscle’s muscle-tendon length and moment arms were calculated by

OpenSim [49] for 1000 different model poses specified using Latin hypercube sampling over a

wide range of joint angles that went well beyond those that occur during walking. Surrogate

models of muscle-tendon lengths and moment arms were then fitted simultaneously by calcu-

lating model coefficients using linear least squares regression. Muscle-tendon velocities were

Table 1. List of muscles in the model, which DOF each muscle actuates, and source of each muscle’s excitation signal.

Muscle Actuates EMG Signal Source EMG Type

Adductor brevis Hip FE, Hip AA Adductor longus Fine wire

Adductor longus Hip FE, Hip AA

Adductor magnus distal Hip FE, Hip AA

Adductor magnus ischial Hip FE, Hip AA

Adductor magnus middle Hip FE, Hip AA

Adductor magnus proximal Hip FE, Hip AA

Gluteus maximus superior Hip FE, Hip AA Gluteus maximus Surface

Gluteus maximus middle Hip FE, Hip AA

Gluteus maximus inferior Hip FE, Hip AA

Gluteus medius anterior Hip FE, Hip AA Gluteus medius Surface

Gluteus medius middle Hip FE, Hip AA

Gluteus medius posterior Hip FE, Hip AA

Gluteus minimus anterior Hip FE, Hip AA

Gluteus minimus middle Hip FE, Hip AA

Gluteus minimus posterior Hip FE, Hip AA

Iliacus Hip FE, Hip AA Iliacus or Psoas Fine wire

Psoas Hip FE, Hip AA

Semimembranosus Hip FE, Hip AA, Knee FE Semimembranosus Surface

Semitendinosus Hip FE, Hip AA, Knee FE

Biceps femoris long head Hip FE, Hip AA, Knee FE Biceps femoris long head Surface

Biceps femoris short head Knee FE

Rectus femoris Hip FE, Hip AA, Knee FE Rectus femoris Surface

Vastus medialis Knee FE Vastus medialis Surface

Vastus intermedius Knee FE

Vastus lateralis Knee FE Vastus lateralis Surface

Lateral gastrocnemius Knee FE, Ankle PDF, Ankle IE Medial gastrocnemius Surface

Medial gastrocnemius Knee FE, Ankle PDF, Ankle IE

Tibialis anterior Ankle PDF, Ankle IE Tibialis anterior Surface

Tibialis posterior Ankle PDF, Ankle IE Tibialis posterior Fine wire

Peroneus brevis Ankle PDF, Ankle IE Peroneus longus Surface

Peroneus longus Ankle PDF, Ankle IE

Peroneus tertius Ankle PDF, Ankle IE

Soleus Ankle PDF, Ankle IE Soleus Surface

Extensor digitorum longus Ankle PDF, Ankle IE Extensor digitorum longus Fine wire

Flexor digitorum Longus Ankle PDF, Ankle IE Flexor digitorum longus Fine wire

https://doi.org/10.1371/journal.pone.0179698.t001
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not matched because the sampling process was time independent. The resulting surrogate geo-

metric models closely reproduced the subject’s muscle-tendon lengths, velocities, and moment

arms for walking as calculated by the scaled OpenSim musculoskeletal model with calibrated

joint parameters. Median fitting errors for all muscles were less than 1.6 mm for moment arms

and 0.69 mm for muscle-tendon lengths.

The final step of the calibration process was creation of an EMG-driven model by optimiz-

ing activation, Hill-type muscle-tendon, and surrogate geometric model parameter values for

all muscles such that lower extremity joint moments predicted by the model matched those

calculated by inverse dynamics as closely as possible (Fig 2). Because of the large number of

design variables and quantities being tracked in the cost function, the optimization was highly

over-constrained. The design variables altered by the optimization were: electromechanical

delays d, activation time constants τact, activation nonlinearity constants c3, scale factors defin-

ing the maximum processed EMG value achievable by each muscle, common scale factors for

the optimal muscle fiber length and tendon slack length of each muscle, and coefficients b0

through bn defining muscle-tendon lengths, velocities, and moment arms. These model

parameter values were calibrated using a sequence of seven optimizations to reduce the likeli-

hood of entrapment in a local minimum. In the first and fourth optimizations, electromechan-

ical delays, muscle activation time constants, activation nonlinearity constants, and EMG scale

factors were adjusted while all other design variables were fixed at their initial or previous val-

ues. In the second and fifth optimizations, common scale factors for optimal muscle fiber

lengths and tendon slack lengths were adjusted. In the third and sixth optimizations, coeffi-

cients defining muscle-tendon geometry were adjusted. Finally, in the seventh optimization,

all design variables were adjusted simultaneously. All optimizations were performed using

MATLAB’s fmincon sequential quadratic programming algorithm [50].

To maintain anatomic realism, the cost function for these optimizations not only mini-

mized errors in model-predicted lower extremity joint moments but also penalized changes in

model parameter values, muscle kinematics, and muscle moment arms away from their initial

values and trajectories [48]. Joint moment errors were calculated for both active and passive

moments. Active moments were calculated from the subject’s walking data via an OpenSim

inverse dynamic analysis performed for ten gait cycles from each walking speed. Passive

moments were taken from measurements reported in the literature for a wide range of joint

angle combinations [51]. These passive moment data were included to provide additional

information for estimating passive muscle-tendon properties. Initial model parameter values

were either taken directly from the literature or customized to the subject based on informa-

tion in the literature (for example, peak isometric force values were calculated using informa-

tion reported in [52]), while initial muscle kinematic and moment arm trajectories were taken

from the subject’s scaled OpenSim model. Details regarding specification of initial guesses,

variable bounds, and cost function terms can be found in the S1 Appendix.

Model evaluation

Using the optimization process described above, we evaluated our EMG-driven modeling pro-

cess by performing two “calibrate, then test” scenarios. Gait cycles from all walking speeds

were selected for this process. To develop the necessary inputs for calibration and testing, we

performed OpenSim inverse kinematic and inverse dynamic analyses for each walking cycle.

Using the inverse kinematic results, we generated reference muscle-tendon length, velocity,

and moment arm curves from the surrogate geometric models, which avoided potential dis-

continuities caused by problems associated with muscle wrapping surfaces. All EMG, inverse

kinematic, inverse dynamic, and muscle-tendon geometric curves were resampled to 101 time
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Fig 2. Flowchart of EMG-driven model calibration process for walking. The goal is to find model parameter values (i.e., activation

parameters, surrogate geometry parameters, and muscle-tendon parameters) such that experimental processed EMG data and joint
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points per walking cycle. In addition, to prevent numerical issues at heel strike and toe off, and

to accommodate identification of electromechanical delays, we included 20 additional time

frames of all data before the start of each gait cycle. Given the curves output by OpenSim anal-

yses, we identified and removed outlier trials using criteria described in the S1 Appendix.

The two “calibrate, then test” evaluation scenarios differed based on whether or not the test-

ing phase included walking data from faster speeds not included in the calibration phase. For

the first scenario, model calibration was performed using 50 trials of data from all five walking

speeds (10 trials per speed) and model testing was performed using an additional 50 trials of

data from the same five speeds. For the second scenario, model calibration was performed

using 30 trials of data from the three slowest walking speeds (10 trials per speed) and model

testing was performing using an additional 50 trials of data from all five walking speeds,

including 0.7 and 0.8 m/s. For both scenarios, two EMG-driven models, one with and one

without geometric adjustments, were calibrated via optimization to match inverse dynamic

joint moment data from the calibration walking trials. All models were adjusted to match joint

moments for five DOFs in each leg: hip flexion extension, hip adduction-abduction, knee flex-

ion-extension, ankle plantar-dorsiflexion, and ankle inversion-eversion. Since EMG data were

collected from only 16 muscles in each leg, excitations for muscles without EMG data were

specified using EMG data from related muscles [14]. A list of the muscles used in the model,

the associated joints they actuate, and the EMG signals that control them can be found in

Table 1. Using only joint kinematics and processed EMG signals as inputs, the calibrated

EMG-driven models were used to predict joint moments at each speed for 10 walking trials

withheld from calibration. Mean absolute errors (MAE) between predicted and inverse

dynamic joint moments were calculated across each gait cycle to evaluate the accuracy of all

EMG-driven models:

MAE ¼
1

n

Xn

i¼1

jMID
i � MEtM

i j ð16Þ

where MID
i is a moment from inverse dynamics, MEtM

i is the corresponding moment predicted

by an EMG-driven model, and n is the number of time frames being evaluated. For each

speed-joint-side combination, we performed a non-parametric Wilcoxon signed-rank test to

evaluate whether the 10 MAE values for the two methods were statistically different. For aver-

age MAE differences across all speeds for each joint-side combination, we performed a non-

parametric Friedman’s test with blocking based on gait speed. For all statistical tests, the level

of statistical significance was set at p< 0.05.

Results

When calibrated using walking data from all five speeds, the EMG-driven model with geometric

adjustments (henceforth the “WGA model”) produced more accurate moment predictions for all

joints than did the model without geometric adjustments (henceforth the “NGA model”) (Figs 3

and 4, Table 2). For additional walking trials not used in the calibration process, geometric adjust-

ments improved joint moment predictions by an average of 25%, with the largest improvements

occurring at the hip (33%), following by the ankle (21%), and finally the knee (16%). The largest

average improvement for any joint moment occurred for left hip adduction-abduction (43%).

Improvements produced by adding geometric adjustments were generally comparable between

kinematics can be input to the model and lower extremity joint moments that closely match experimental joint moments are output from

the model. Blue lines indicate model parameter values changed by the optimization process.

https://doi.org/10.1371/journal.pone.0179698.g002

Lower extremity EMG-driven modeling with automated adjustment of geometry

PLOS ONE | https://doi.org/10.1371/journal.pone.0179698 July 11, 2017 10 / 24

https://doi.org/10.1371/journal.pone.0179698.g002
https://doi.org/10.1371/journal.pone.0179698


legs and across walking speeds. From a statistical standpoint, 85% of the calculated percent

changes in MAE were statically significant, with only the right ankle inverse-eversion moment

demonstrating few statistically significant changes.

When calibrated using walking data from only the three slowest speeds, the WGA model

again produced more accurate moment predictions for all joints than did the NGA model,

with the one exception being the right ankle inversion-eversion moment (Figs 5 and 6,

Table 3). For additional walking trials at speeds used in the calibration process, geometric

adjustments improved joint moment predictions by an average of 23%, with the largest

improvements occurring at the hip (34%), following by the knee (22%), and finally the ankle

(12%). The largest average improvement for any joint moment occurred for right hip adduc-

tion-abduction (46%). For additional walking trials at faster speeds not used for calibration,

geometric adjustments improved joint moment predictions by an average of 15%, with the

Fig 3. Average joint moment predictions for walking at 0.5 m/s when calibrating using all five walking speeds. NGA stands for no geometric

adjustments and WGA stands for with geometric adjustments. Average experimental values with gray bands specifying +/- 1 standard deviation are shown

for visualization purposes and were calculated at each time point after each gait cycle was resampled to 101 points.

https://doi.org/10.1371/journal.pone.0179698.g003
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largest improvements again occurring at the hip (23%), following by the ankle (10%), and

finally the knee (9%). The largest average improvement for any joint moment again occurred

for left hip adduction-abduction (37%). As noted above, the one exception was the right ankle

inversion-eversion moment, which exhibited worse moment predictions (9% of an extremely

small moment) with the addition of geometric adjustments. From a statistical standpoint, 72%

of the calculated percent changes in MAE were statically significant, with only the right ankle

inversion-eversion and left ankle plantarflexion-dorsiflexion moments demonstrating few sta-

tistically significant changes.

Geometric adjustments improved joint moment predictions by making relatively small

changes to muscle-tendon lengths and moment arms (Tables A2 and A3 in the S1 Appendix).

For both “calibrate, then test” scenarios, the average change in muscle-tendon length was less

than 0.9 cm (5%), while the average change in muscle moment arm was less than 0.5 cm

Fig 4. Average joint moment predictions for walking at 0.8 m/s when calibrating using all five walking speeds. NGA stands for no geometric

adjustments and WGA stands for with geometric adjustments. Average experimental values with gray bands specifying +/- 1 standard deviation are shown

for visualization purposes and were calculated at each time point after each gait cycle was resampled to 101 points.

https://doi.org/10.1371/journal.pone.0179698.g004
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(17%). On average, the largest muscle-tendon length change was 3.8 cm (8%) for the left semi-

tendinosus muscle, the largest absolute mean moment arm change was 1.8 cm (44%) for the

left soleus muscle about the left ankle joint, and the largest percent moment arm change was

121% (0.8 cm) for the left medial gastrocnemius muscle about the left subtalar joint. These

changes allowed the WGA and NGA models to match the published passive moment curves

well, though the WGA model matched them slightly better (Fig 7).

Discussion

This study evaluated a novel method for calibrating an EMG-driven model of walking, includ-

ing automated adjustment of surrogate musculoskeletal geometry, to match experimental joint

moment data. In addition to geometric adjustments, the method possesses several other uni-

que features, including scaling of EMG signals and matching of published lower extremity pas-

sive joint moment curves. The approach was evaluated using walking data collected from a

hemiparetic subject, highlighting that neurological impairment may not limit the potential

utility of the approach (i.e., the subject’s neural control strategy does not need to be “optimal”).

When scaled generic musculoskeletal geometry was used without adjustment, the EMG-driven

model was less accurate at predicting joint moments, especially for the hip. Though we cannot

claim that the adjusted geometry is a more accurate representation of the subject’s actual

geometry, these adjustments improved lower extremity joint moment predictions both for

speeds used in the calibration process and for faster speeds omitted from calibration. When

creating EMG-driven models of walking that include the hip, adjustments to musculoskeletal

geometry may be especially helpful for improving the accuracy of hip moment predictions.

Table 2. Mean MAE values for testing trials using EMG-driven models calibrated at all available walking speeds without (NGA) and with (WGA)

geometric adjustments. The percent change in MAE when geometric adjustments were added is also reported, with the standard deviation of MAE between

trials shown in parenthesis.

Gait Speed Model Type Hip FE (N-m) Hip AA (N-m) Knee FE (N-m) Ankle PDF (N-m) Ankle IE (N-m)

Right Left Right Left Right Left Right Left Right Left

0.4 m/s NGA 5.28 (1.34) 5.31 (1.39) 7.23 (0.83) 7.91 (1.57) 6.6 (0.49) 5.43 (1.26) 7.44 (2.29) 5.96 (1.08) 2.48 (1.46) 6.18 (1.14)

WGA 3.83 (0.81) 4.61 (1.29) 3.58 (0.46) 4.99 (1.03) 5.22 (0.66) 4.69 (0.94) 5.44 (2.66) 5.28 (0.98) 2.27 (1.85) 4.88 (0.34)

% Change -27.43* -13.19 -50.46* -36.92* -20.93* -13.71* -26.96* -11.43 -8.54 -21.09*

0.5 m/s NGA 4.23 (1.03) 5.94 (1.28) 5.87 (0.72) 7.64 (2.11) 7.07 (0.78) 4.67 (1.18) 7.50 (2.15) 7.14 (0.89) 3.52 (2.47) 5.74 (0.73)

WGA 3.47 (0.64) 4.47 (1.23) 4.02 (1.36) 4.26 (1.69) 5.33 (0.64) 4.28 (0.83) 4.85 (0.94) 6.09 (1.16) 3.46 (2.74) 4.40 (0.91)

% Change -18.06* -24.69* -31.49* -44.30* -24.62* -8.26 -35.31* -14.70* -1.90 -23.43*

0.6 m/s NGA 5.46 (1.43) 6.76 (0.89) 8.01 (1.89) 7.81 (0.86) 5.33 (1.14) 5.11 (1.49) 7.27 (1.92) 7.24 (2.39) 3.42 (1.15) 5.98 (1.19)

WGA 4.10 (0.75) 4.94 (1.33) 4.55 (0.60) 4.46 (0.73) 4.27 (0.85) 4.81 (1.50) 4.89 (2.03) 5.63 (0.75) 2.84 (1.40) 4.27 (0.93)

% Change -24.91* -27.00* -43.23* -42.92* -19.91* -5.78 -32.76* -22.21* -17.04* -28.53*

0.7 m/s NGA 6.33 (1.05) 7.08 (0.94) 6.87 (1.37) 8.26 (1.09) 5.52 (1.07) 6.05 (1.58) 8.01 (2.33) 7.43 (1.52) 3.15 (1.31) 5.78 (1.04)

WGA 4.73 (1.10) 5.50 (0.99) 4.41 (1.48) 4.46 (1.30) 4.55 (0.52) 4.92 (1.52) 5.98 (1.33) 5.51 (0.91) 2.95 (1.33) 4.05 (0.64)

% Change -25.34* -22.22* -35.88* -45.98* -17.50 -18.58* -25.34* -25.85* -6.23 -30.02*

0.8 m/s NGA 6.92 (0.79) 7.45 (1.03) 7.17 (1.06) 8.81 (1.70) 6.43 (0.61) 4.76 (1.12) 8.48 (1.79) 7.24 (1.26) 3.56 (1.73) 5.50 (0.54)

WGA 5.11 (1.30) 5.04 (1.10) 4.55 (0.62) 4.79 (0.98) 5.28 (0.56) 4.22 (1.39) 5.93 (1.56) 5.99 (1.18) 2.91 (1.41) 4.22 (0.39)

% Change -26.17* -32.32* -36.50* -45.61* -17.90* -11.31* -30.11* -17.29* -18.15* -23.38*

Average NGA 5.65 6.51 7.03 8.09 6.19 5.20 7.74 7.00 3.23 5.84

WGA 4.25 4.91 4.22 4.59 4.93 4.58 5.42 5.70 2.88 4.36

% Change -24.76* -24.50* -39.95* -43.22* -20.36* -11.87* -30.02* -18.60* -10.56 -25.27*

* indicates a statistically significant change (p < 0.05) based on Wilcoxon signed-rank tests. For average differences, a Friedman’s test with blocking based

on gait speed was used.

https://doi.org/10.1371/journal.pone.0179698.t002
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Our EMG-driven models with geometric adjustments predicted joint moments for walking

more accurately and under more complex conditions than did previous EMG-driven studies

that predicted joint moments using only walking data (Table 4) [13,15]. In our study, joint

moment predictions were generated for five DOFs in both legs using 16 EMG signals per leg

with a large number of walking trials collected at multiple walking speeds, including trials

from faster walking speeds not included in the calibration process. In two previous EMG-

driven studies that calibrated their models using only walking data, joint moments were pre-

dicted for only the ankle [13] or only the knee [15] using 7 to 10 EMG signals from a single leg

with a small number of walking trials collected at a single walking speed. Despite the use of

more complex conditions, our EMG-driven model still produced lower moment errors for

walking speeds included in and omitted from calibration. The only EMG-driven modeling

study to date to report errors in predicted hip moments during walking is Sartori et al. (2012)

Fig 5. Average joint moment predictions for walking at 0.5 m/s when calibrating using only the three slowest walking speeds. NGA stands for no

geometric adjustments and WGA stands for with geometric adjustments. Average experimental values with gray bands specifying +/- 1 standard deviation

are shown for visualization purposes and were calculated at each time point after each gait cycle was resampled to 101 points.

https://doi.org/10.1371/journal.pone.0179698.g005
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[14]. Though our hip moment prediction errors are much lower than those reported in that

study (see Table 4), their single- and multi-DOF EMG-driven models were calibrated using

data from walking plus three other activities, which likely have made their calibration process

more difficult. At the same time, their high hip moment prediction errors are consistent with

our findings that geometric adjustments are especially helpful for the hip.

Most studies calibrate their EMG-driven models to predict moments about a single DOF,

which is a simpler problem than predicting moments about five DOFs simultaneously. Sartori

et al. (2012) [14] found that single-DOF NGA models calibrated with similar accuracy as a

four-DOF NGA model. In contrast, when we calibrated single-DOF NGA and WGA models

using our optimization framework, moment errors were always lower than with the corre-

sponding multi-DOF model (Table 4). This finding makes sense since multi-DOF models con-

strain the solution more than do single-DOF models due to inter-joint coupling caused by

Fig 6. Average joint moment predictions for walking at 0.8 m/s when calibrating using only the three slowest walking speeds. NGA stands for no

geometric adjustments and WGA stands for with geometric adjustments. Average experimental values with gray bands specifying +/- 1 standard deviation

are shown for visualization purposes and were calculated at each time point after each gait cycle was resampled to 101 points.

https://doi.org/10.1371/journal.pone.0179698.g006
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muscles that actuate multiple DOFs. Interestingly, our multi-DOF WGA model produced

comparable moment errors (sometimes slightly better, sometimes slightly worse) to our sin-

gle-DOF NGA models, again highlighting the value of adding geometric adjustments.

In addition to adjustment of surrogate musculoskeletal geometry, our EMG-driven model-

ing approach possessed six other unique features that likely improved our moment predictions

even without geometric adjustments. First, our study utilized fine-wire EMG data from several

deep muscles. Fine-wire EMG data allowed us to include potentially important muscles omit-

ted from most other studies: iliopsoas, tibialis posterior, flexor digitorum longus, and extensor

digitorum longus. Omission of these muscles likely contributed to increased moment predic-

tion errors in previous studies, especially omission of iliopsoas for the hip flexion moment.

Secondly, our study filtered EMG data with a variable low pass cutoff frequency that depended

on the period of the gait cycle. When using a constant low pass cutoff frequency, we found that

slow gait speeds would have comparatively noisier EMG signals than did faster speeds, which

adversely affected our moment predictions. In contrast, when a variable low pass cutoff fre-

quency was used, moment predictions became more reliable across speeds. Third, our study

optimized scale factors defining maximum EMG values. Most studies normalize EMG data

to a maximum voluntary contraction trial (MVC) or the maximum EMG value over all col-

lected trials. However, these methods may be unreliable indicators of maximum muscle ex-

citation [53], and true MVC trials are often hard to obtain. Furthermore, maximal M-wave

Table 3. Mean MAE values for testing trials using EMG-driven models calibrated at 0.4, 0.5, and 0.6 m/s walking speeds without (NGA) and with

(WGA) geometric adjustments. The percent change in MAE when geometric adjustments were added is also reported, with the standard deviation of MAE

between trials shown in parenthesis. The bold row headers indicate the gait speeds being predicted that were not included in model calibration.

Gait Speed Model Type Hip FE (N-m) Hip AA (N-m) Knee FE (N-m) Ankle PDF (N-m) Ankle IE (N-m)

Right Left Right Left Right Left Right Left Right Left

0.4 m/s NGA 5.06 (1.39) 5.13 (1.48) 6.98 (0.70) 7.77 (1.31) 6.69 (0.50) 5.34 (1.34) 7.25 (2.39) 5.06 (1.10) 2.01 (1.21) 5.82 (1.03)

WGA 3.78 (0.73) 4.45 (1.00) 3.37 (0.55) 4.99 (1.22) 4.37 (0.57) 4.50 (0.86) 5.79 (2.37) 4.80 (1.34) 2.07 (1.78) 4.60 (0.40)

% Change -25.21* -13.30 -51.67* -35.77* -34.68* -15.69* -20.22* -5.08 2.96 -20.88*

0.5 m/s NGA 4.32 (1.09) 5.77 (1.45) 6.41 (0.94) 7.38 (1.78) 7.24 (0.74) 4.47 (1.22) 6.8 (2.25) 6.02 (1.09) 2.88 (2.04) 5.29 (0.59)

WGA 3.15 (0.73) 4.20 (0.97) 3.57 (1.07) 4.21 (1.85) 4.18 (0.77) 3.93 (0.87) 4.89 (1.02) 5.56 (1.20) 3.50 (2.79) 4.00 (0.65)

% Change -26.96* -27.25* -44.28* -42.92* -42.26* -12.12* -28.07* -7.72 21.55* -24.41*

0.6 m/s NGA 5.54 (1.52) 6.64 (0.89) 8.26 (2.38) 7.70 (0.92) 6.39 (1.37) 5.68 (1.46) 6.74 (1.82) 5.79 (2.53) 2.70 (0.90) 5.53 (1.04)

WGA 4.30 (1.12) 4.76 (1.49) 4.71 (1.06) 4.39 (0.92) 5.88 (0.69) 4.84 (1.30) 5.23 (2.01) 5.30 (1.16) 2.70 (1.02) 3.83 (0.72)

% Change -22.43* -28.41* -42.95* -43.00* -7.97* -14.77* -22.41* -8.47* -0.14 -30.70*

Average NGA 4.97 5.85 7.22 7.62 6.77 5.17 6.93 5.62 2.53 5.55

WGA 3.75 4.47 3.89 4.53 4.81 4.43 5.30 5.22 2.76 4.14

% Change -24.68* -23.61* -46.16* -40.51* -28.99* -14.32* -23.49* -7.19 8.90 -25.27*

0.7 m/s NGA 6.50 (1.09) 7.38 (1.11) 7.42 (2.02) 8.13 (1.37) 6.26 (1.1) 7.27 (1.43) 7.66 (1.89) 6.45 (1.34) 2.46 (1.23) 5.29 (0.98)

WGA 5.14 (1.04) 6.70 (1.18) 4.67 (2.02) 5.21 (1.5) 6.23 (0.62) 6.12 (1.50) 6.18 (1.30) 5.93 (0.93) 2.95 (1.35) 3.73 (0.47)

% Change -20.93* -9.30* -37.02* -35.97* -0.46 -15.84* -19.29* -8.01* 20.23* -29.48*

0.8 m/s NGA 7.02 (0.87) 7.42 (1.27) 7.50 (1.50) 9.40 (1.88) 7.75 (0.62) 6.75 (1.29) 8.03 (2.10) 6.63 (1.45) 2.95 (1.66) 5.19 (0.52)

WGA 6.25 (1.61) 7.34 (1.20) 4.89 (1.01) 5.84 (0.88) 7.52 (0.57) 5.65 (1.53) 6.45 (1.63) 6.54 (1.98) 2.92 (1.21) 4.08 (0.32)

% Change -10.93 -1.06 -34.79* -37.87* -2.91 -16.35* -19.74* -1.41 -1.17 -21.32*

Average NGA 6.76 7.40 7.46 8.76 7.01 7.01 7.85 6.54 2.70 5.24

WGA 5.69 7.02 4.78 5.52 6.88 5.89 6.32 6.23 2.94 3.91

% Change -15.74* -5.17 -35.90* -36.99* -1.81 -16.09* -19.52* -4.66 8.55 -25.44*

* indicates a statistically significant change (p < 0.05) based on Wilcoxon signed-rank tests. For average differences, a Friedman’s test with blocking based

on gait speed was used.

https://doi.org/10.1371/journal.pone.0179698.t003
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measurements demonstrate that MVC trials produce EMG values that are smaller than maxi-

mum EMG [53–55]. Therefore, we decided to optimize a muscle excitation scale factor and

penalize it for deviating away from its initial value. Inclusion of optimized excitation scale fac-

tors was one of the most valuable unique additions in our approach. Fourth, our study

included matching of experimentally measured passive joint moments reported in the litera-

ture [51]. These moments corresponded to much larger ranges and combinations of joint

angles than occur during walking. Though these data were not subject specific, they likely

helped the muscles in our model to traverse reasonable ranges on their normalized force-

length curves. Matching of passive joint moment curves was another highly valuable unique

addition in our approach. Fifth, our study used a larger number of walking trials for model cal-

ibration and testing. Use of a large number of trials allowed us to minimize the impact of out-

lier trials in both our calibration and testing process. It also allowed us to capture the broadest

possible variability in the subject’s walking data, which was important since our method uses

Fig 7. Passive joint moment matching. Passive moments predicted by our EMG-driven models calibrated using all walking speeds (dashed lines)

compared to published passive moments (solid lines) for the WGA and NGA models.

https://doi.org/10.1371/journal.pone.0179698.g007
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only walking data for calibration. Lastly, our study included kinematic calibration of lower

extremity joint centers and orientations [37,48]. Previous studies have demonstrated that

inverse dynamics moments are sensitive to the position and orientation of joint centers in the

body segments [56]. As a result, the moments being matched during calibration may not be

the true moments produced by muscles, resulting in EMG-driven calibration and prediction

errors. Furthermore, placing a joint center in the wrong location causes offsets in muscle

moment arms, further decreasing the quality of the moment predictions. Calibration of lower

limb joint positions and orientations may have eliminated some of these modeling errors,

thereby improving EMG-driven predictions.

While adjustments to geometric parameter values greatly reduced moment prediction

errors, the accuracy with which the adjusted geometry represents the subject is unknown.

Scaled generic models can have errors in mean moment arm values on the order of 3 to 4 cm

[30]. Similarly, errors in muscle-tendon lengths can be 10 cm or more compared to geometric

data obtained from MR images [30]. Such errors have been shown to have a significant impact

on predicted joint moments in an EMG-driven knee model [29]. In our study, the largest aver-

age moment arm change was 1.8 cm, while the largest average muscle-tendon length change

was 3.8 cm (Tables A2 and A3). These changes are well within the error ranges reported in the

literature, suggesting that the geometric adjustments were at least reasonable.

While other studies have used varied movements and dynamometer data to calibrate and

test their EMG-driven models, we purposefully used only walking data combined with pub-

lished passive joint moment data for our calibration process. Restoring normal walking function

is a common and important clinical goal. Therefore, models that can reproduce experimental

walking data have an increased likelihood of being clinically useful. Furthermore, it could be

difficult in a time-limited clinical setting with function-limited patients to collect EMG, motion

capture, and ground reaction data for a wide range of movement tasks. For these reasons, we

decided to calibrate our EMG-driven models using only the subject’s walking data and pub-

lished passive joint moment data.

We made several decisions to account for the limitations of using primarily walking data

for model calibration. To increase the information content in our calibration data, we used a

large number of walking trials (10 per speed for either three or five speeds). As indicated by

post-hoc statistical analyses, this approach resulted in joint angles, joint moments, and EMG

amplitudes that were statistically different between the faster and slower walking speeds. Since

walking data provide information over only limited ranges of joint motion and loading, we

Table 4. Comparison of moment error values reported in the literature with moment error values reported in this study. Other EMG-driven studies

not indicated [12,16–19] have prediction errors greater than those listed in this table or use a variety of activities for calibration and/or testing and are therefore

disqualified from comparison. For the knee and ankle joints, the studies shown calibrate and test their models using only gait data. Sartori et al. 2014 was the

only available EMG-driven model of the hip, and was calibrated using a variety of activities.

Literature This Study Single-DOF This Study Multi-DOF

DOF Single-DOF Multi-DOF NGA WGA NGA WGA

Hip FE 171 261 4.42 3.87 6.08 4.58

Hip AA 9.71 161 6.39 4.02 7.56 4.41

Knee FE 7.802 7.61 4.61 4.27 5.70 4.76

Ankle PDF 6.033 161 6.51 4.70 7.37 5.56

Ankle IE — — 2.96 2.36 4.53 3.62

1Sartori et al. [14] MAE (values estimated from figures since values for walking only were not explicitly stated)
2Kumar et al. [15] root mean square error (RMSE)
3Bogey et al. [13] RMSE

https://doi.org/10.1371/journal.pone.0179698.t004
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included published passive joint moment data [51] in our calibration process. This decision

provided moment calibration information over broader ranges of motion than occur during

walking. While our hemiparetic subject is likely to be less flexible than the healthy subjects

used in [51], these unique data still represent the general trends in passive moments one might

expect to observe in any ambulatory individual. Without including these extra data, the passive

moments predicted at extreme joint angles outside the bounds of walking were unrealistic,

with muscles generating passive forces that were well above maximum isometric force. None-

theless, since our EMG-driven model calibration process was based primarily on walking data,

it may not predict joint moments well for motions other than walking.

The ability of our EMG-driven model with geometric adjustments to predict joint moments

well for faster non-calibration walking speeds may make this model clinically useful for predictive

gait optimization studies. By incorporating our EMG-driven model into a dynamic patient-spe-

cific full-body walking model that includes deformable foot-ground contact models, researchers

could predict how changes in a patient’s muscle excitations could alter the patient’s gait pattern

in a favorable way [57]. Muscle excitations could be controlled individually or coupled together

through muscle synergies calculated from the patient’s EMG data [57]. For a subject with hemi-

paresis, the optimizations could seek to identify minimal changes in the patient’s muscle excita-

tions that would produce a desired improvement in walking speed and bilateral symmetry. The

predicted neural control and gait pattern changes could potentially help clinicians determine

which muscles should be targeted for excitation timing changes, strength increases, and/or func-

tional electrical stimulation (i.e., treatment prescription), as well as how much of each type of

change is required (i.e., treatment dosage).

For such approach to become clinically useful, computational speed will be an important

consideration. For all 5 speeds together with 10 gait trials per speed, EMG-driven model cali-

bration performed using 10 of 12 cores on a 2 GHz Intel Xeon workstation required approxi-

mately 2 hours of CPU time for the NGA approach and 10 hours for the WGA approach. The

NGA approach has roughly a third of the design variables of the WGA approach and skips one

round of step-wise optimizations. For both approaches, repeated spline sampling of processed

EMG data to accommodate eletromechanical delays is the primary computational bottleneck.

While the WGA CPU time in particular may seem high, it needs to be viewed in light of the

larger “computational neurorehabilitation” treatment design process. It currently takes about

half a day to collect the necessary walking data and one to three days to process it before an

EMG-driven model can be calibrated. It also takes about day to calibrate a full-body walking

model to match the subject’s EMG, marker motion, and ground reaction data simultaneously

with a dynamically consistent model. Once the full-body model is calibrated, however, new

walking motions can be predicted via direct collocation optimal control in about 30 minutes of

CPU time [57]. Thus, it would currently be impossible to collect data, process it, calibrate the

EMG-driven model, calibrate the dynamic full-body walking model, and generate new walking

motion predictions within a single clinical visit. Nonetheless, development of personalized

neurorehabilitation prescriptions off-line could still be valuable if the prescriptions are more

effective and efficient than those currently developed solely through clinical intuition.

One of the primary limitations of the present study was the use of a deterministic rather

than stochastic EMG-driven model development and evaluation process. When undertaking

this study, our goal was to build upon published EMG-driven modeling studies [12,14–16,28]

by adding one primary enhancement (adjustment of parameter values related to surrogate rep-

resentations of the musculoskeletal geometry) along with several secondary enhancements

(matching of published passive joint moment data, adjusting EMG normalization parameters,

calibrating joint positions/orientations to improve the accuracy of inverse dynamic joint

moments). These previous studies followed a similar deterministic model development and
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evaluation approach. In contrast, a stochastic model development and evaluation approach

would account for how uncertainties in experimental inputs (i.e., ground reactions, marker

motions) and skeletal model parameter values (i.e., joint positions and orientations, segment

mass properties) affect the inverse dynamic joint moments being matched in the model cali-

bration process. Such an approach, which would need to be designed and implemented differ-

ently than the present deterministic approach, would facilitate assessment of EMG-driven

model joint moment predictions in light of the amount of uncertainty present in the net joint

moments from inverse dynamics.

To explore whether inverse dynamic joint moment uncertainties would have affected our

findings significantly, we performed a post-hoc Monte Carlo analysis (see S1 Appendix for

details) on a representative walking trial from the 0.8 m/s speed, where inverse dynamic joint

moment errors would be expected to be the largest. The analysis performed 2000 perturbed

inverse dynamic analyses, where each iteration added estimated uncertainties to the input

ground reactions, marker motions, and skeletal model joint positions/orientations (Table A4

in S1 Appendix). For each iteration, mean absolute error (MAE) across the gait cycle was cal-

culated for each inverse dynamic moment, and the mean and standard deviation of the 2000

MAE values were then calculated (Table A5 in S1 Appendix). Compared to these mean MAE

values, the mean MAE values calculated for the NGA and WGA methods were between 1.7

and 9.4 times larger (Table A5 in S1 Appendix), indicating that both EMG-driven modeling

methods were fitting data rather than noise and that improvements from the WGA method

over the NGA method reported in Tables 2 and 3 were likely true improvements.

This study possesses several other important limitations that have not been mentioned pre-

viously and should be considered when interpreting our results. First, due to the complexity of

the EMG-driven model development process, we have only modeled a single hemiparetic sub-

ject thus far. However, the purpose of the present study was to evaluate the feasibility and

potential benefits of our proposed EMG-driven modeling method with geometric adjustments,

and analysis of a single subject is sufficient for those purposes. Second, our method requires

EMG data, including signals from deep muscles acquired with fine-wire electrodes, for all

muscles that contribute significantly to the task being modeled. In our case, this requirement

meant that fine-wire data were needed from iliopsoas in particular. Without prior knowledge

of muscle excitation patterns, our optimization problem would be highly underdetermined

with no well-defined solution. For studies lacking critical EMG data, geometric adjustments

using the methods described here would be difficult. Third, our model includes muscles for

which EMG data are not available. For these muscles, we apply excitations from anatomically

related muscles (review Table 1 describing how 16 EMG signals were applied to 35 muscles

per leg), which may not accurately represent the true excitations. Fourth, our method used ini-

tial model parameter values and bounds taken from the literature. There is no guarantee that

literature values will represent well the anatomy of a particular subject, and even using them

for bounds may over-constrain the model. Unfortunately, clinical measurement of patient-

specific model parameter values is not currently possible, and thus literature values must suf-

fice as a starting point for the time being. Fifth, we assumed bilateral symmetry for most

model parameter values, despite the fact that our subject had suffered a stroke. We evaluated

this assumption by removing the bilateral symmetry requirement and recalibrating each leg

separately across all speeds. While this modification produced small improvements in joint

moment predictions, the optimizations were more likely to get stuck in a local minimum. Fur-

thermore, computation time increased significantly due to a near doubling in the number of

model parameter values. For these reasons, we maintained bilateral symmetry for all model

parameter values except excitation scale factors and time delays. For subjects with greater neu-

rological impairment, a bilateral symmetry assumption may be more limiting.
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In conclusion, the novel EMG-driven model calibration method with geometric adjust-

ments presented in this study improved joint moment prediction accuracy for walking com-

pared to results generated using a scaled geometric musculoskeletal model. The proposed

EMG-driven model creation process can be almost entirely automated and requires little effort

when compared with construction of complex geometric models from MR and/or CT data.

Because of its improved moment prediction accuracy, our modeling method with geometric

adjustments may prove useful in future clinical applications. Based on the results of this study,

we recommend that researchers incorporate geometric adjustments into their EMG-driven

modeling process to improve the accuracy of joint moment predictions for walking, especially

at the hip.
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