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a b s t r a c t 

Concurrent estimation of muscle activations, joint contact forces, and joint kinematics by means of 

gradient-based optimization of musculoskeletal models is hindered by computationally expensive and 

non-smooth joint contact and muscle wrapping algorithms. We present a framework that simultaneously 

speeds up computation and removes sources of non-smoothness from muscle force optimizations using 

a combination of parallelization and surrogate modeling, with special emphasis on a novel method for 

modeling joint contact as a surrogate model of a static analysis. The approach allows one to efficiently 

introduce elastic joint contact models within static and dynamic optimizations of human motion. We 

demonstrate the approach by performing two optimizations, one static and one dynamic, using a pelvis- 

leg musculoskeletal model undergoing a gait cycle. We observed convergence on the order of seconds for 

a static optimization time frame and on the order of minutes for an entire dynamic optimization. The 

presented framework may facilitate model-based efforts to predict how planned surgical or rehabilitation 

interventions will affect post-treatment joint and muscle function. 

© 2018 IPEM. Published by Elsevier Ltd. All rights reserved. 
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1. Introduction 

Modeling and simulation of muscle and joint contact forces has

the potential to improve patient care for movement-related dis-

orders. Reliable concurrent estimation of these forces along with

joint kinematics could be used to predict joint replacement per-

formance, surgical outcomes, and rehabilitation strategies for a va-

riety of musculoskeletal disorders. Most studies that predict mus-

cle and joint contact forces model biological joints as constraint-

based engineering joints. In those studies, muscle and joint con-

tact forces are calculated by following a two-step process: (1) Mus-

cle forces are computed using a multibody dynamic skeletal model

and optimization, and then (2) Associated joint contact forces are

calculated from knowledge of the muscle forces and joint reaction

forces from inverse dynamics [1–4] . The downsides of this two-

step approach are that it can produce erroneous muscle force pre-

dictions [5] and cannot predict secondary kinematics (e.g., knee

anterior-posterior translation) or ligament forces for the joints be-

ing modeled. 
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For this reason, researchers have sought to develop more com-

lex modeling methods that allow concurrent estimation of mus-

le and joint contact forces. Such methods replace constraint-based

ngineering joints with deformable joint surfaces whose interac-

ions are controlled primarily by muscle and ligament forces. Lin

t al. (2010) predicted muscle and knee contact forces simultane-

usly using a two-level optimization method where the outer level

uessed the muscle force distribution and the inner-level found the

orresponding static configuration of the joint using surrogate con-

act models [6] . These models approximated the input-output char-

cteristics of elastic foundation contact models. Thelen et al. (2014)

nd Smith et al. (2016) used a modified version of computed mus-

le control (CMC), where a controller tracked desired accelerations

hile joint translational accelerations were assumed to be zero

nd an elastic foundation was used to model contact [7,8] . Marra

t al. (2015) and Andersen et al. (2011, 2017) used force-dependent

inematics (FDK), where secondary joint coordinates were added

s design variables within a static optimization [9–11] . With this

pproach, the velocities and accelerations of the secondary coordi-

ates were assumed to be zero and an elastic foundation was used

o model contact. In one recent study a surrogate contact model

as used to speed up FDK computation [12] . Guess et al. (2014)
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Fig. 1. Summary of computational framework for speeding up and removing non- 

smoothness from musculoskeletal optimization problems with joint contact. In the 

initial stage, joint contact is modelled using finite elements, muscle-tendon geome- 

try using path actuators, and the simulator interface is the OpenSim API for Matlab. 

Three custom tools were developed which allowed us to obtain surrogate models 

of joint contact and musculoskeletal geometry, as well as an efficient simulation 

interface for deployment in the optimization stage. 
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voided optimization and instead used feedback control with de-

ormable contact models for the foot and joint of interest [13] .

oissenet et al. (2014) performed concurrent computation of mus-

le and contact forces within an optimization by using simplified

oint models and Lagrange multipliers [14] . 

Unfortunately, developing optimization-based predictions of 

otion where muscle and joint contact forces are solved con-

urrently remains a difficult and computationally slow task. The

rimary reasons are the difficulties encountered when apply-

ng gradient-based optimization to musculoskeletal models with

omputationally costly and non-smooth (discontinuous or non-

ifferentiable) contact models as well as non-smooth muscu-

oskeletal geometry models (e.g., muscle-tendon lengths and

oment arms). Contact models are computationally costly be-

ause they involve computing distances between complex three-

imensional surfaces and are non-smooth when various regions of

he contacting surfaces come in to and out of contact. Moreover,

ontact forces and moments are sensitive to small pose variations

hat affect normal contact force, resulting in badly scaled gradi-

nts when pose parameters defining joint position and orienta-

ion are used as design variables [15] . Non-smoothness in muscle-

endon lengths and muscle moment arms can arise when mus-

les are modeled geometrically using sequences of line segments

hose paths are determined by either wrapping objects or via

oints added or removed as a function of spanned joint angles

16–18] . Non-smoothness can be introduced when a line segment

nters contact with a wrapping object, passes through a wrapping

urface, snaps to the other side of a wrapping surface, or is re-

outed by turning on or off a via point. 

In this study, we propose a novel framework for performing

oncurrent muscle, joint contact, and joint kinematic simulations

ia optimization. We remove the non-smoothness problem while

ncreasing computational efficiency by: (1) Generating surrogate

odels of deformable joint contact from finite element models and

fficiently implementing them within optimizations using a novel

pproach, (2) Generating surrogate models of musculoskeletal ge-

metry and using a custom Hill-type muscle-tendon model with

igid tendon, and (3) Parallelizing multibody dynamic model eval-

ations. The method results in the computationally efficient com-

utation of non-linear constraints that are incorporated into static

nd dynamic optimizations of muscle and contact forces. In addi-

ion to describing the overall approach with special focus on sur-

ogate contact modeling, we provide two illustrative examples to

emonstrate implementation of the approach to knee contact and

eg muscle force prediction. In the first example, we use a static

ptimization approach based on the existing FDK framework which

e will call modified FDK (mod-FDK). In the second example, we

ormulate the same problem as a dynamic optimization and solve

t using direct collocation. 

. Methods 

.1. Overview 

The goal of our framework ( Fig. 1 ) is to remove non-smoothness

nd computational expense from optimizations that predict muscle

orces, joint contact forces, and joint motions simultaneously. We

chieve this goal using a combination of surrogate modeling and

arallelization. Surrogate modeling generates smooth and compu-

ationally inexpensive approximations of more computationally ex-

ensive models, while parallelization splits part of the computa-

ional load among multiple processors. 

.1.1. Key concepts 

Before continuing with the methods, we first introduce several

ey concepts. The first concept is that of primary and secondary
eneralized coordinates. Secondary generalized coordinates are as-

umed to maintain a quasi-static equilibrium between muscle, lig-

ment, and contact forces, disregarding the effect of inertial forces.

he time derivatives of the secondary generalized coordinates are

lways assumed to be zero in our approach. Primary generalized

oordinates are assumed to be affected by inertial forces, and thus

heir time derivatives are not assumed to be zero. 

Another important concept is that of static and dynamic opti-

ization. A static optimization performs a minimization at a spec-

fied time point, while a dynamic optimization performs a min-

mization over some period of time. Dynamic optimization may

lso be known as trajectory optimization or optimal control. While

 static optimization minimizes a cost function and is subjected

o equality and/or inequality constraints, a dynamic optimizations

inimizes a cost functional and is subjected to path constraints

nd possibly end-point constraints, though other types of con-

traints can be incorporated as well. 

For contact modeling purposes, we also define the concept of

 fixed body and a moving body. Since contact forces depend on

he relative orientation of one body with respect to another, we

efine the fixed body as the contacting body that is conceptually

xed while the moving body is thought of as being translated and

otated by six pose parameters (3 translations and 3 rotations) rel-

tive to the fixed body. 

A final important concept related to contact modeling is that of

ensitive directions. A sensitive direction is defined as a degree of

reedom (DOF), either translational or rotational, which when per-

urbed causes relatively large changes in the contact loads (forces

nd moments resulting from contact) associated with that DOF.

he concept of sensitive directions is intimately related to surro-

ate contact model creation and optimization formulation. 

.1.2. About this framework 

In inverse dynamics-based muscle force optimizations, the goal

s to find the muscle activations (design variables) that mini-

ize some assumed measure (e.g., fatigue or energy) while the

oint forces and moments calculated via inverse dynamics are con-

trained to be balanced by a combination of muscle, ligament, and

ontact forces. The focus of our framework is on how to efficiently

ompute smooth non-linear constraints, representing the balancing

f the net joint forces and moments. In the first part of the meth-

ds, we explain the general approach required to compute these
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Fig. 2. Nonlinear constraint framework for the optimization of muscle activations, 

joint kinematics, and joint contact loads. Design variables are framed in blue ovals, 

models are framed in orange rectangles, prescribed data are framed in grey parallel- 

ograms, and the set of residual loads is framed in a yellow rectangle. Thick dashed 

lines represent loads, thin continuous lines represent kinematics, the thin dashed 

line represents muscle activations, and the thin dotted line represents muscle- 

tendon lengths, muscle-tendon velocities, and muscle moment arms. Note that the 

primary kinematics can be also be design variables when the optimization is dy- 

namic. (For interpretation of the references to color in this figure legend, the reader 

is referred to the web version of this article.) 
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constraints. We then explain the implementation of each compo-

nent involved in evaluating these constraints, which involves (a)

formulating and generating surrogate contact models from finite

element static analyses, (b) generating surrogate models of muscu-

loskeletal geometry, and (c) computing parallelized skeletal inverse

dynamics. 

2.2. General approach 

Our optimization approach uses the following categories of de-

sign variables: (1) Muscle activations, (2) Reserve actuator activa-

tions, (3) Contact loads along sensitive directions expressed in the

coordinate systems of the “moving” bodies, and (4) Generalized co-

ordinates for secondary kinematics corresponding to insensitive di-

rections ( Fig. 2 ). If the optimization is dynamic, then the general-

ized coordinates and their first and second time derivatives cor-

responding to the primary kinematics can be design variables as

well, whereas if the optimization is static, the generalized coordi-

nates corresponding to the primary kinematics must be prescribed

functions of time. Given design variable categories (3) and (4) and

the primary kinematics, surrogate models of static contact anal-
ses output all corresponding loads and poses required to obtain

tatic equilibrium with contact. The generalized speeds and accel-

rations are assumed to be zero for generalized coordinate values

btained from surrogate models of static contact analyses (as in

he standard FDK method [10] ). With all kinematics defined, we

se surrogate geometric models to compute the action of muscles

n the multibody system [19,20] . With all loads and kinematics de-

ned, we perform inverse dynamics and obtain generalized resid-

al forces. We subtract any reserve actuator loads in design vari-

ble category (2) from the generalized residual forces to obtain the

et residual loads. To satisfy the equations of motion, a set of non-

inear constraints is defined where the net residual loads must be

pproximately equal to zero. 

.3. Specific components 

.3.1. Modeling joint contact as static analyses 

The most unique aspect of the proposed approach is the way

oint contact is modeled. Existing approaches incorporate contact

y adding to the original system components that directly apply

oads to contacting bodies based on the spatial relationship be-

ween their articular surfaces (e.g., elastic contact models). With

his approach, surrogate contact model inputs are poses, and the

utputs are corresponding loads. In our approach, we model elas-

ic contact as a set of neural networks that emulate the behav-

or of finite element contact simulations, where surrogate contact

odel inputs are combinations of poses and loads, and the outputs

re the corresponding combinations of loads and poses. In this

ay, each surrogate contact model evaluation yields the solution

o a static analysis, which is a unique way of performing surrogate

ontact modeling. For surrogate contact model inputs, the poses

orrespond to insensitive directions while the loads correspond to

ensitive directions. We use our freely-available software Surrogate

ontact Modeling Toolbox (SCMT) [21] to build our neural-network

ontact model approximations. 

There are three advantages to treating contact interactions as

tatic analyses. The first advantage is that this method allows

s to more easily parametrize the optimization design space to

void evaluating the surrogate model outside of its valid domain.

hen poses are used as surrogate contact model inputs for sensi-

ive directions, it is easy for a simulation to choose pose values

hat correspond to unrealistic deeply penetrating or out of con-

act situations. The second advantage is that the optimization is

ot highly sensitive to any of the design variables, leading to a

ell-conditioned contact problem. In contrast, use of pose values

n sensitive directions as design variables leads to poorly condi-

ioned optimization problems. Finally, because we use surrogate

odels based on feedforward neural networks, we simultaneously

peed up contact computation by several orders of magnitude and

mooth out all discontinuities in the contact model. 

We have created a simple analytical example problem to illus-

rate the approach and its advantages. This example can be found

n the Supplementary Material. 

.4. Surrogate modeling of muscle-tendon lengths, velocities, and 

oment arms 

To provide smooth and computationally fast evaluations of

usculoskeletal geometry, we created a tool that constructs sur-

ogate models of muscle-tendon lengths, velocities, and moment

rms automatically. The tool adaptively samples muscle-tendon

engths and moment arms from an OpenSim [17] model and fits

hem using multivariable polynomial regression, producing surro-

ate musculoskeletal geometry models while keeping the root-

ean-square of the relative muscle-tendon length and moment

rm errors below a user-specified threshold. 
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Fig. 3. Schematic of information flow for the custom Matlab-OpenSim interface. 

The scheme transfers data from the Matlab workspace to a separate program run- 

ning MPI via a mex file and shared memory. 

Table 1 

Surrogate contact model inputs and outputs for a complete knee 

model where the contact problem is treated as a static analysis. For 

the tibiofemoral model, the inputs are the anterior-posterior transla- 

tion, medial-lateral translation, internal-external rotation, and flexion 

angle, along with superior-inferior force and adduction moment. For 

the patellofemoral model, the inputs are the anterior-posterior and 

medial-lateral compressive forces, as well as superior-inferior trans- 

lation and all rotations of the femoral component with respect to the 

patella. The outputs yield all corresponding loads and pose parame- 

ters which result from a static analysis. 

TF PF 

Inputs t x , 
MB F y , t z , 

MB T x , r y , r z 
MB F x , t y , 

MB F z , r x , r y , r z 
Outputs F x , F 

med 
y , F lat 

y , F z , T x , T y , T z , r x , t y F y , T x , T y , T z , t x , t z 

t  

a  

b  

a  

g  

t  

e  

f  

w  

I

3
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fi
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In this approach, lengths are fit as either cubic, quartic, or quin-

ic functions of the generalized coordinates on which the muscle

ath actuator depends. Each muscle-tendon length l is modeled as

 function of the m generalized coordinates q 1 , q 2 , . . . , q m 

that in-

uence it: 

 = f (q 1 , q 2 , . . . , q m 

) (1)

Using the work-equivalence principle [22] , we generate expres-

ions for moment arms S i for i = 1 , 2 , . . . , m . 

 i = − ∂ l 

∂q i 
(2) 

sing the chain rule, we obtain expressions for the muscle-tendon

elocity v . 

 = 

m ∑ 

i =1 

(
∂ l 

∂q i 

∂q i 
∂t 

)
(3) 

 = −
m ∑ 

i =1 

S i ˙ q i (4) 

We use a custom Hill-type muscle-tendon model with rigid ten-

on to compute the muscle forces F M : 

 

M = F M 

o 

[
a f l ( ̃  l M ) f v ( ˜ v M ) + f p ( ̃  l M ) 

]
cos α (5) 

ach muscle force is a function of its activation a , muscle-tendon

ength l , muscle-tendon velocity v , tendon slack length l T s , optimal

ber length l M 

o , maximum isometric muscle force F M 

o , and penna-

ion angle α. The functions f l , f v , and f p correspond to the normal-

zed active force-length curve, active force–velocity curve, and pas-

ive force-length curve, which we modeled using smooth analytic

unctions [23] , ˜ l M and 

˜ v M correspond to the normalized muscle

ber length and normalized muscle fiber velocity. For more details

bout this process, see the Supplementary Material. 

.4.1. Computing parallelized skeletal inverse dynamics 

At the core of our computational framework is a software in-

erface that allows one to evaluate OpenSim multi-body dynamic

odels from within Matlab (The Mathworks, Natick, MA) with

mall overhead and with parallelization capability. This interface

llows us to incorporate surrogate joint contact and musculoskele-

al geometric models, incorporate custom muscle-tendon models,

erform inverse dynamic and state derivative calculations, and ob-

ain quantities of interest such as marker locations and reported

orces. While OpenSim provides a Matlab SWIG interface, it was

ot appropriate for our purposes due to the relatively large over-

ead caused by its wrappers. Our solution was to use a Matlab

ex file that places and retrieves data to and from shared memory

Windows mapped memory files), and a C ++ program that runs in

he background and scatters multiple queries over multiple proces-

ors using a Message Passing Interface (MPI) ( Fig. 3 ). MPI not only

as a small thread management overhead but is also the de-facto

tandard in high performance computing clusters and allowed us

o perform queries of our force components and system dynamics

sing a heterogeneous network of computers. 

. Example applications: Muscle and knee contact force 

ptimizations with surrogate contact models 

We present two related example applications where we pre-

ict leg muscle forces, knee joint contact forces, and knee joint

inematics simultaneously during walking. The first example ap-

lication is a static optimization (mod-FDK) and the second a

ynamic optimization (direct collocation). Both applications use

he same OpenSim musculoskeletal model of a pelvis and right

eg implanted with a total knee replacement (TKR), the same
ibiofemoral (TF) and patellofemoral (PF) surrogate contact models,

nd the same surrogate models of musculoskeletal geometry. For

oth example applications, secondary knee motions were solved in

 quasi-static sense from surrogate contact models, meaning the

eneralized velocities and accelerations for these motions were set

o zero during the solution process. Both applications also had the

xperimentally measured ground reactions applied directly to the

oot segment of the model. The model and experimental gait data

ere taken from the first Grand Challenge Competition to Predict

n-Vivo Knee Loads [24] . 

.1. Surrogate contact models of static analyses 

We built surrogate contact models from a data set of static con-

act analyses performed using the finite element software FEBio

25] . The coordinate system alignment and naming conventions for

he inputs and outputs of the contact models are as follows: For

he TF model, the x -axis points posteriorly, the y -axis superiorly,

nd the z -axis medially. For the PF model, the x -axis points pos-

eriorly, the y -axis superiorly, and the z -axis medially. Forces and

orques are represented as uppercase body F side 
dir 

and 

body T side 
dir 

while

ranslations and rotations are represented with lowercase t dir and

 dir . In this convention, dir refers to an associated spatial direction

 x, y , or z ), side can be medial ( med ), lateral ( lat ), or the net load

no superscript), and body can be the moving body ( MB ) or the

xed body (no superscript) on which the loads are applied. 

The created surrogate contact models consisted of the follow-

ng inputs and outputs ( Table 1 ). The TF surrogate contact model

as composed of nine neural networks that calculated the load
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Fig. 4. Matrix scatterplot of the point cloud used to construct surrogate models of 

contact analysis for the TF joint. Blue dots represent the training data set and red 

dots represent generated scattered points throughout the re-parametrized space. 

Notice that the empty white space resulting from infeasible combinations of ver- 

tical force and adduction moment is excluded from the search space. (For interpre- 

tation of the references to color in this figure legend, the reader is referred to the 

web version of this article.) 
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a  
quantities F x , F 
med 

y , F lat 
y , F z , T x , T y , T z expressed in the fixed body (tib-

ial component) as well as the sensitive poses t y and r x representing

superior-inferior translation and adduction angle, respectively. The

inputs to all neural networks in the TF contact model were t x , 
MB F y ,

t z , 
MB T x , r y , r z where MB F y and 

MB T x are the net superior-inferior

force and adduction-abduction torque applied to the femoral com-

ponent during the TF finite element static analyses used for gener-

ating surrogate model sample points. The PF surrogate model was

composed of six neural networks which calculated the load quan-

tities F y , T x , T y , T z expressed in the fixed body (patellar button) as

well as the sensitive poses t x , t z . The inputs to all neural networks

of the PF contact model were MB F x , t y , 
MB F z , r x , r y , r z where MB F x

and 

MB F z are the compressive anterior-posterior force and medial-

lateral force applied on the femoral component during the PF finite

element static analyses used for generating surrogate model sam-

ple points. 

To define feasible, physically realistic regions of inputs space,

we analyzed the point clouds used to build the surrogate contact

models using a scatter plot matrix of the input data, which is a

set of projections of the input data onto its various dimensions. To

bound the contact model inputs to the valid region of the input

space, we fitted smooth functions to the boundaries of the point

cloud projections. For the TF model, we bound the allowable ver-

tical force range to a smooth linear-to-linear function of the ad-

duction moment ( Fig. 4 ). We followed a similar approach for the

PF contact model. While this approach does not guarantee that the

surrogate model will be valid, it does remove from the optimiza-

tion design space large regions of invalid input space correspond-

ing to non-physical configurations. 

3.2. Surrogate musculoskeletal geometry 

We used a custom program to automatically generate surro-

gate models of musculoskeletal geometry by sampling muscle-

tendon lengths and moment arms from our subject-specific Open-

Sim model in a wide range of poses that spanned beyond those of

the walking motion to be simulated. We specified a maximum RMS

error of 10% in the moment arms relative to the muscle’s moment

arm range, which was achieved by sampling points and changing

polynomial order adaptively. 
.3. Ligament models 

We used a point-to-point spring to model the patellar tendon

nd coordinate springs to model stiffness in the tibiofemoral joint.

he coordinate springs were not meant to be accurate representa-

ions of ligament actions but only to limit the motion of the con-

acting bodies. Neither the resting length nor the stiffness of the

oordinate springs was calibrated for either approach. We used low

tiffness springs for the mod-FDK approach to minimize simulated

igament action and higher stiffness springs for the direct collo-

ation approach since the optimization would not converge to a

olution with low stiffness springs. 

.4. Example 1: Modified force-dependent kinematics (mod-FDK) 

The mod-FDK approach is a method for performing static opti-

ization with deformable joint contact. Just as with standard FDK

10] , this approach performs one optimization per time frame, and

he secondary joint kinematics and contact loads are solved to-

ether with the muscle activations. The cost function minimized

 weighted sum of squares of muscle activations, reserve actuator

oads, and contact forces: 

minimize 
e , r, c 

n e ∑ 

i =1 

e 2 i + 

n r ∑ 

i =1 

w i r 
2 
i + w c 

[
(F med 

y ) 2 + (F lat 
y ) 2 

]
subject to 

[
F res 
( e , r, c ) 

]2 − tol 2 < 0 

T F r z −PF r z − offset < 0 

(6)

In the above problem formulation, the design variables were

uscle activations e , reserve actuator activations r , and surrogate

ontact model inputs c (review Table 1 and Fig. 5 ). The cost due to

eserve actuation and contact forces is weighed with values cho-

en to minimize reserve actuator action and to scale the cost re-

ated to contact forces. F res stands for the vector of residual loads,

hich contains the unbalanced generalized force for each degree

f freedom. We imposed near zero residual load tolerance for all

egrees of freedom except hip internal rotations, which our model

as unable to balance well. TF r z represents the tibiofemoral flex-

on coordinate and 

PF r z the patellofemoral flexion coordinate. The

nequality constraint enforcing an offset between tibiofemoral and

atellofemoral flexion angles helped the optimizer avoid local min-

ma in non-physiological configurations. We used an offset value

f 20 degrees. We solved this problem using Matlab’s fmincon SQP

ptimizer. 

.5. Example 2: Dynamic optimization using direct collocation 

As opposed to the mod-FDK approach in the previous section,

his approach performs a single optimization taking all time frames

nto account simultaneously. The direct collocation problem was

et up to use implicit inverse dynamics as opposed to explicit for-

ard dynamics while using jerk as an additional control: 

inimize 
e , r, c 

∫ t f 

t 0 

[ 

1 

n e 

n e ∑ 

i =1 

e 2 i ( t ) + 

1 

n r 

n r ∑ 

i =1 

r 2 i ( t ) + 

1 

n j 

n j ∑ 

i =1 

j i ( t ) 

] 

dt 

ubject to 

⎡ 

⎣ 

˙ q 

˙ v 
˙ a 

⎤ 

⎦ = 

⎡ 

⎣ 

v 

a 

j 

⎤ 

⎦ 

 

res 
( e , r, c ) = 0 

F r z −PF r z − offset < 0 

 ( p 

exp ) i −
(
p 

model 
)

i 
‖ −to l i = 0 , i = 1 , 2 , . . . , n m 

. 

(7)

The design variables were identical to those in the Mod-FDK

pproach except that they varied across time. The cost functional
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Fig. 5. Illustration of the design variables corresponding to the surrogate con- 

tact model inputs where t is translation, r is rotation, F is force, and T is torque. 

(a) Design variables corresponding to the tibiofemoral contact model inputs. Notice 

the r z coordinate corresponding to knee flexion is only a design variable in the di- 

rect collocation approach while it is prescribed in the mod-FDK approach. (b) The 

design variables corresponding to patellofemoral contact model inputs. 
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inimized a combination of muscle activations e i ( t ) , reserve actu-

tor activations r i ( t ) , and generalized jerk j i ( t ) . Variables q i ( t ) repre-

ent only the primary generalized coordinates, v i ( t ) their first time

erivatives, and a i ( t ) their second time derivatives. The first con-

traint enforces kinematic consistency, i.e., one curve is the deriva-

ive of another, thereby satisfying the dynamics of the system.

he second and third constraints are similar to those in the Mod-

DK formulation, while the last constraint imposes bounds on the

arker errors. In the last constraint, (p 

exp ) i stands for the position

f the i th experimental marker with respect to the origin of the

ab coordinate system, and (p 

model ) i stands for the corresponding

osition of the i th model marker. 

We solved a discretized approximation of the problem using the

eneral purpose optimal control solver GPOPS-II [26] with sparse

inear solver IPOPT [27] in first derivative mode. Marker errors

ere limited to 5 mm for shank and foot markers and 10 mm for

elvis markers. 
i  

ig. 6. Animation strips of model and knee kinematics resulting from mod-FDK and direc

ith few notable differences in knee flexion and patella rotation. Plots comparing the mo
.6. Results 

The mod-FDK approach converged to a solution in 1 to 10 s of

PU time for each time frame while the direct collocation method

ook 170 s to converge using 60 collocation points when start-

ng from a good previous solution as an initial guess. Both prob-

ems were solved on a PC workstation with 16 processors clocking

.4 GHz each. 

Both approaches succesfully calculated tibiofemoral and 

atellofemoral contact forces and secondary knee kinematics. The

redicted knee kinematics were realistic ( Fig. 6 ) and the contact

orces for both approaches compared reasonably well to the

xperimental contact forces ( Fig. 7 ). Both methods overestimated

he second peak in medial contact force but the direct collocation

ethod severely underestimated the peak lateral contact force.

nterestingly, both methods yielded similar net patellar contact

orces, which reached approximately 40 0 N and 20 0 N for the first

nd second peak, respectively. 

The computed secondary knee kinematics were influenced by

he different coordinate spring stiffness values used for the two

pproaches. Much larger anterior-posterior translation was pre-

icted by the mod-FDK approach, which used a set of low stiffness

prings ( Fig. 8 ). The superior-inferior translation for both meth-

ds approximated the expected trend from fluoroscopy data. The

exion angle was similar for both methods but different from the

xperimental flexion angle obtained from fluoroscopy data corre-

ponding to a different gait cycle. 

To quantify the benefits of using parallel processing and sur-

ogate musculoskeletal geometry, we performed a benchmark test.

e used our pelvis-leg OpenSim model to evaluate the CPU time

equired to perform inverse dynamics for 100 collocation points.

e evaluated our custom C ++ interface having OpenSim’s Matlab

WIG interface as baseline. Our C ++ interface produced a speedup

f 19x. Enabling paralellization increased the speedup to 115x. En-

bling parallelization and incorporating surrogate musculoskeletal 

eometry together produced a speedup of 408x ( Table 2 ). These

enchmark tests were performed on a workstation with two Intel

eon processors, using 13 out of 16 available physical cores. 

We tested our surrogate models of static contact analysis for

oth accuracy and computational speed. The models were com-

utationally inexpensive with the TF model and PF model requir-

ng an average of 147 and 83 μs per evaluation, respectively. The
t collocation approaches overlaid. The gross motion of the models are very similar 

st relevant kinematics can be found in Fig. 8 . 
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Table 2 

CPU times and speedups computed for 100 collocation points using parallelization and 

surrogate muscle geometry. 

Interface Parallelized Time (ms) Speedup 

OpenSim’s Matlab interface No 1083.5 1 

C ++ without surrogate muscle geometry No 57.0 19 

Yes 9.4 115 

C ++ with surrogate muscle geometry No 19.1 57 

Yes 2.7 408 

Fig. 7. Knee contact forces calculated using mod-FDK (static optimization) and 

direct collocation (dynamic optimization) compared to experimental tibiofemoral 

forces measured in-vivo [24] . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t  

a

 

o  

t  

n  

f  

a  

o  

i  

p

 

d  

m  

m  

a  

a  

r  

j  

l  

p

 

d  

l  

g  

e  

f

 

t  

o  

i  

c  

a  

a  

i  

w  

p

 

m  

f  

g  

t  

r  

t  

m  

b  

m  

a  

w  

n  

e  

m

 

d  

f  
accuracy results showed RMS translation errors below 0.2 mm and

orientation errors below 0.1 degrees. Force errors were below 15 N,

and the largest torque error was below 0.7 N mm (see Supplemen-

tary Material for details). 

4. Discussion 

We have presented a novel computational approach for esti-

mating muscle forces, joint contact forces, and joint kinematics

with low computational cost, improved gradients, and all sources

of non-smoothness removed. We moved most of the computa-

tional expense into a pre-processing stage where surrogate mod-

els of contact forces and musculoskeletal geometry were trained

and saved for later use. We also developed an efficient interface

between the optimizer and the OpenSim multibody dynamics en-

gine that lets us use parallelization with little overhead. We have

shown that joint models with elastic contact can be incorporated

into static and dynamic optimizations of human movement, and

that problems formulated within this framework can converge in
imes ranging from seconds for single time frames to minutes for

n entire motion cycle. 

The most novel feature of this framework is the introduction

f neural network-based surrogate models that efficiently emulate

he behavior of static contact analyses within the optimization’s

onlinear constraints. This aspect renders the nonlinear constraint

unction insensitive to measures such as contact penetration. It

lso allows us to couple complex finite element models of elastic

r hyperelastic contact with body-scale or limb-scale biomechan-

cal optimizations, addressing a challenging multi-scale modeling

roblem. 

The results obtained in our example applications not only

emonstrate the feasibility of the presented framework but also

ake the case for the addition of carefully calibrated ligament

odels, as calculated joint kinematics were greatly affected by lig-

ment stiffness. Moreover, because of its computational speed, our

pproach could potentially be used to tune ligament model pa-

ameter values in an outer optimization such that the predicted

oint kinematics matched fluoroscopic measurements. However,

igament model creation and calibration is beyond the scope of the

resent study. 

The example applications yielded reasonable contact force pre-

ictions. To obtain these results, we had to adjust optimal fiber

engths such that muscles exerted little passive force during the

ait cycle. We also made sure that the model was able to match

xperimentally obtained medial and lateral knee contact forces be-

ore performing the predictive optimizations. 

The mod-FDK approach has the advantage of being more robust

o problem formulation than is the optimal control approach. In

ur experience, the direct collocation approach is more challeng-

ng as many problem formulations fail to converge, and it is diffi-

ult to track down where the problem lies. For example, when we

dded a contact force minimization term to the direct collocation

pproach, the optimization would not converge. While perform-

ng an optimization based on direct collocation to predict motion

ithout constraints on markers is theoretically possible, we sus-

ect much “tweaking” would be required to achieve convergence. 

Despite obtaining improved optimization performance, the

od-FDK approach suffered from multiple local minima, which

orced us to perform multiple optimizations from different initial

uesses. We also found that the passive forces generated by Hill-

ype muscle models were insufficient to cause a 6-DOF patella to

emain within the trochear groove of the femoral component in

he absence of additional soft tissue forces. For this reason, we

odeled the patellar tendon as a point-to-point spring, which can

e loaded in both tension and compression. In both examples, our

odel was unable to balance the hip internal rotation moment,

dduction moment, and flexion moment simultaneously, which is

hy we removed the internal rotation moment as an inverse dy-

amic constraint. We believe this issue was caused by modeling

rrors in the attachment points of hip muscles in our OpenSim

usculoskeletal model. 

Comparing our framework to other approaches with slow and

iscontinuous functions is not realistic for two reasons. First, per-

orming gradient-based optimizations on non-smooth functions is
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Fig. 8. Knee kinematics computed via mod-FDK and Direct collocation compared to kinematics measured using fluoroscopy during a different gait cycle. The anterior- 

posterior translation and internal-external rotation have large errors due to the use of coordinate springs instead of an anatomic ligament model. 
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undamentally incorrect and leads to unpredictable results. Sec-

nd, we could not perform the same optimizations with related

odels possessing slow functions since in our formulations, com-

utational smoothness and computational speed are tied together

hrough our surrogate modeling approaches. 

Our framework possesses several important limitations. The

rst limitation is in the method we used to define bounds on the

ontact design variables. While our approach is relatively simple,

elying on the projections of the point cloud to classify valid re-

ions of the design space is crude and not guaranteed to yield

cceptable accuracy. Our approach could be improved by imple-

enting a model that assesses design space validity automatically.

 second limitation is the use of synchronous parallelization in

ur Matlab-OpenSim interface, which works well for direct collo-

ation when multiple queries are made at once but could not be

sed to perform multiple static optimizations in parallel. Imple-

enting a dual synchronous/asynchronous parallelization approach

ould make the interface suitable for both static and dynamic op-

imizations. The third limitation is that the velocities and accel-

rations of the secondary kinematics are assumed to be zero in

ur modified FDK and direct collocation approaches, as in the FDK

pproach. However, we have found this approximation to be rea-

onable since in our experience adding secondary kinematics to

he state vector in dynamic optimizations only yields vibration ar-

ifacts resulting from the highly stiff ligament and contact mod-

ls. A fourth limitation involves using multivariable polynomials to

odel muscle-tendon lengths, velocities, and moment arms. While

his approach is relatively simple as surrogate model training can
e done via regression, it has two problems. The first problem is

imited accuracy, which we addressed by using higher order poly-

omials and adaptive building, though our custom tool currently

imits muscle-tendon length polynomials to at most fifth degree.

his limitation could potentially be overcome by using a different

urrogate modeling approach such as B-splines [28] or neural net-

orks. The second problem is that some muscles may depend on

any DOFs. Since the number of sample points required to main-

ain surrogate model accuracy scales exponentially with the num-

er of input dimensions, when a muscle’s geometric path is depen-

ent on many DOFs, the limited training data set becomes sparse

nd the surrogate model of musculoskeletal geometry loses accu-

acy. A final limitation is that the modeled joints are assumed to

emain in contact always. Allowing liftoff would make the elastic

ontact model non-invertible, which the presented approach can-

ot handle. However, we believe surrogate models of static con-

act analyses could be coupled with complementarity constraints

o allow for contact liftoff in optimizations without introducing

iscontinuities. 

The computational framework presented in this study allows

or joint contact models to be added to both static and dy-

amic gradient-based muscle force optimizations with efficiency

nd computational speed, allowing muscle forces, elastic contact

orces, secondary knee kinematics, and even primary joint kine-

atics to be calculated simultaneously using optimization meth-

ds. Our approach allows for the explicit mechanical coupling be-

ween the joint of interest and the rest of the body, which opens

p new opportunities in biomechanical simulation. 
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