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bstract

Clinicians often use intuitive models based on clinical experience or regression models based on population studies to plan treatment of
ait-related disorders. Because such models are constructed using data collected from previous patients, the predicted clinical outcome for a
articular patient may not be reliable. We propose a new approach that uses computational models based on engineering mechanics to predict
ost-treatment outcome from pre-treatment movement data. The approach utilizes a four-phase optimization process built around a dynamic,
atient-specific gait model. The first three phases calibrate the model’s joint, inertial, and control parameters, respectively, where the control
arameters are weights in an optimization cost function that tracks the patient’s pre-treatment gait motion and loads. The last phase predicts
he patient’s post-treatment gait pattern by performing a tracking optimization with the calibrated model modified to simulate the selected
reatment.

We demonstrate the approach by simulating how two treatments for knee osteoarthritis (OA) – gait modification and high tibial osteotomy
HTO) surgery – alter the external knee adduction torque for a specific patient. By performing multiple tracking optimizations, we calibrated
he model’s parameter values to reproduce the patient’s knee adduction torque curve for a toe out gait motion. When we performed a tracking
ptimization with the calibrated model using a modified footpath to simulate an increased stance width, the predicted reduction in both
dduction torque peaks matched experimental results to within 4.8% error. When we performed a tracking optimization with the same model

sing modified leg geometry to simulate HTO surgery, the predicted reductions were consistent with published data. The approach requires
urther evaluation with a larger number of patients to determine its effectiveness for planning the treatment of gait-related disorders on a
atient-specific basis.

2007 IPEM. Published by Elsevier Ltd. All rights reserved.
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. Introduction
Clinicians would like to predict post-treatment clinical
utcome on an individual patient basis given the treatment
pproach and parameters under consideration. Two exam-
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les related to knee osteoarthritis (OA) treatment are gait
odification and high tibial osteotomy (HTO) surgery. In

oth cases, the goal is to shift the weight-bearing axis of
he leg (i.e., hip center to ankle center) from the diseased
edial to the healthy lateral compartment of the knee. This

hift alters the medial–lateral load distribution in the knee,
lowing or possibly even reversing the degenerative disease

rocess.

The external knee adduction torque measured during post-
reatment gait has been identified as a quantitative indicator of
ong-term clinical outcome [1–5]. This quantity has recently
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een shown to be highly correlated with in vivo medial com-
artment load during gait [6]. Though the knee adduction
orque can also be measured pre-treatment, it is not nor-

ally used for treatment planning. Instead, clinicians use
xperience and clinical observations to determine the best
reatment approach and parameters. Unfortunately, clinical
utcomes from HTO surgery have been highly variable, and
dentification of novel gait patterns that offload the medial
ompartment has been elusive.

Since clinical experience alone has not led to optimal
utcomes, previous studies have used experimental and com-
utational methods to seek to identify optimal treatment
pproaches. For gait modifications, experimental studies have
nvestigated how changes in stride length [5], walking speed
7], and toe out angle [1,5,8,9] affect the peak knee adduction
orque. For HTO surgery, gait studies [2,4,5], cadaver studies
10,11], and computer modeling studies [12,13] have inves-
igated how surgical method (e.g., opening versus closing
edge) and parameters affect the medial–lateral load distri-
ution in the knee following surgery. While these studies have
ed to general principles for altering the load distribution, no
uantitative method currently exists for accurately predicting
ow a particular intervention will affect the post-treatment
nee adduction torque for an individual patient.

This study presents a novel computational framework
or predicting post-treatment functional outcome from pre-
reatment movement data on an individual patient basis.
he foundation of the framework is a three-dimensional, 27
egree-of-freedom (DOF), full-body gait model. The frame-
ork utilizes a four-phase optimization procedure. The first

hree phases calibrate the model’s joint parameters (JPs: posi-
ions and orientations of joint axes in the body segment
oordinate systems), inertial parameters (IPs: body segment
asses, mass centers, and central principal moments of iner-

ia), and control parameters (CPs: tracking weights in an
ptimization cost function) to the patient’s pre-treatment
ovement data. The last phase uses the calibrated model

o predict the patient’s post-treatment outcome. We demon-
trate the framework by simulating how gait modification and
TO surgery alter the knee adduction torque in a specific
atient. The predictions are compared to adduction torque
hanges measured experimentally for a modified gait pattern
erformed by the same patient and reported in the literature
or HTO surgery.

. Methods

.1. Experimental data

Experimental kinematic and ground reaction data were
ollected from a single patient with knee OA (male, age 41

ears, height 170 cm, mass 69 kg, alignment 5◦ varus) using
video-based motion analysis system (Motion Analysis Cor-
oration, Santa Rosa, CA) and two force plates (AMTI,
atertown, MA). Institutional review board approval and
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F
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nformed consent were obtained prior to the experiments.
omparable to Reinbolt et al. [14], the Cleveland Clinic
arker set was used with 2 additional markers (e.g., supe-

ior and lateral) placed on each hindfoot segment for a total
f 37 markers. Eight static markers over the medial and lat-
ral femoral epicondyles and medial and lateral malleoli were
sed in conjunction with 29 dynamic markers to create seg-
ent coordinate systems for the dynamic model described

elow.
Unloaded isolated joint motion trials were performed to

xercise the primary functional axes of each lower extrem-
ty joint (i.e., hip, knee, and ankle). For each joint, the
atient was instructed to move the distal segment within
he physiological range of motion so as to voluntarily exer-
ise all DOFs of the joint. For each hip, multiple cycles
f flexion–extension followed by abduction–adduction were
ecorded. Similar to Leardini et al. [15], internal–external
otation was avoided to reduce skin and soft tissue move-
ent artifacts. For each knee, multiple cycles of knee
exion–extension were recorded. For each ankle, mul-

iple cycles of combined plantarflexion–dorsiflexion and
nversion–eversion were recorded.

Gait kinematic and ground reaction data were collected
o provide simultaneous motion of all lower extremity joints
nder load-bearing physiological conditions. One cycle (e.g.,
eft heel strike to left heel strike) of three gait motions
ith different footpaths (i.e., the position and orientation
f each foot with respect to the laboratory coordinate sys-
em) was recorded to produce a range of different knee
dduction torque curves, where resultant joint torques were
omputed from inverse dynamics. The first gait motion
sed the patient’s self-selected normal footpath, the sec-
nd one used a toe out gait motion (i.e., increased foot
rogression angle), and the third used a wide stance gait
otion (i.e., increased width between feet). Marker data
ere collected at 120 Hz during 10 s for isolated joint
otion trials and 5 s for gait motion trials. Raw marker

ata were filtered using a fourth-order, zero phase-shift,
ow pass Butterworth Filter with a cutoff frequency of 6 Hz
16].

.2. Dynamic model

The foundation of the proposed computational frame-
ork is a three-dimensional, full-body dynamic gait model

Fig. 1). The equations of motion for the 27 DOF model were
erived with the symbolic manipulation software AutolevTM

OnLine Dynamics, Sunnyvale, CA). Comparable to Ander-
on and Pandy’s [17] model structure, three translational and
hree rotational DOFs express the movement of the pelvis
n the laboratory coordinate system and the remaining 13
egments comprise four open chains branching from the

elvis.

The positions and orientations of joint axes within adja-
ent segment coordinate systems are defined by unique JPs.
or example, a single knee joint axis is simultaneously estab-
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Fig. 1. Schematic of the three-dimensional, 14 segment, 27 DOF full-body
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odel linkage joined by a set of gimbal, universal, and pin joints. The
ynamic model forms the foundation for the four-phase optimization process
sed for the computational framework.

ished in both the femur and tibia coordinate systems. These
arameters are used to designate the following joint types:
DOF hips, 1 DOF knees (with external adduction torque

alculated from the corresponding internal reaction torque),
DOF ankles with nonintersecting axes [16], 3 DOF back, 2
OF shoulders, and 1 DOF elbows. Each joint type provides
simplified mechanical approximation to the primary in vivo
otions of the corresponding anatomical joint. The masses,
ass centers, and central principal moments of inertia for

ach body segment are defined by unique IPs. Anatomic land-
ark methods are used to estimate nominal values for JPs

18–20] and IPs [21] based on scaling rules developed from
adaver studies. Nominal values for the JPs are taken from
14], while nominal values for the IPs are determined from
he patient’s height and weight using regression relationships
eported in [21].
.3. Computational framework

Built on the foundation of this dynamic model is a four-
hase optimization approach for calibrating model parameter

w
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alues and predicting post-treatment outcome with the cal-
brated model (Fig. 2). All four optimization phases use

atlab’s nonlinear least squares algorithm (The Math-
orks, Natick, MA). Unless otherwise stated, the derivatives
eeded by each optimization are calculated analytically
sing the automatic differentiation program ADOL-C
22].

The first phase calibrates the model’s JP values by per-
orming a sequence of optimizations (Fig. 2, Phase 1). First,
P values for individual lower extremity joints are optimized
eparately using isolated joint motion data, and then JP values
or all lower extremity joints are optimized together using a
ait motion trial. Each optimization simultaneously adjusts
P values and model motion to track an experimental motion
s closely as possible. This single level formulation is dif-
erent from our previous nested, or two-level, optimization
ormulation that separated the adjustment of JP values and
odel motion [14]. The JP cost function (eJP, Eq. (1)) min-

mizes errors between the model (mt) and experimental (m)
arker locations over nm markers, 3 Cartesian coordinates,

nd nf time frames:

JP = min
pJP, q

nf∑
i=1

3∑
j=1

nm∑
k=1

[mijk − m
′
ijk(pJP, q)]

2
(1)

For all JP optimizations, the design variables are selected
ower extremity JP values (pJP) along with 540 B-spline
odes (q) parameterizing 27 generalized coordinate trajec-
ories defining the model motion with 20 nodes per DOF.
he initial seed for each B-spline node is taken as zero,
hich represents a static model without motion. Optimiza-

ion of an isolated joint motion trial uses 6 hip, 9 knee, or 12
nkle JP values. In contrast, optimization of the gait motion
rial uses a reduced set of 4 hip, 9 knee, and 4 ankle JPs,
ince determination of certain JP values (e.g., hip joint cen-
er location along the medial–lateral axis) is inaccurate for

otions of less than 25◦ (e.g., hip abduction–adduction angle
hroughout the gait cycle) [23]. Initial JP values for the gait
ptimization are taken from the isolated joint optimization
esults.

The second phase calibrates the model’s IP values by
erforming a single optimization (Fig. 2, Phase 2). This cal-
bration step adjusts IP values but not model motion (i.e.,
ptimal gait kinematics are taken from the JP optimiza-
ion above) to reduce residual loads (i.e., fictitious external
orces and torques). These loads are computed from inverse
ynamics and exist due to model structure, model parame-
er value, and experimental measurement errors. At the root
f our dynamic model is a non-anatomical 6 DOF ground-
o-pelvis joint. Though this joint is not actuated in real life,
t requires residual loads to maintain dynamic consistency

ith the experimental data. The IP cost function (eIP, Eq.

2)) minimizes a combination of differences between initial
p

′
IP) and optimal (pIP) IP values and residual loads (F and

) at the ground-to-pelvis joint over 3 Cartesian coordinates
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Fig. 2. Flow chart describing the four phases of the optimization process. For phase 1, isolated joint motion and normal gait data are used to calibrate lower
extremity joint parameter values under weight bearing conditions. For phase 2, calibrated joint parameter values and normal gait data are used to calibrate
f ial para
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ull-body inertial parameter values. For phase 3, calibrated joint and inert
alibrate control parameter values. For phase 4, the calibrated joint, inerti
redict a patient-specific post-treatment gait pattern.

nd nf time frames:

IP = min
pIP

nf∑
i=1

3∑
j=1

{[
Fij(pIP)

BW

] 2

+
[

Tij(pIP)

BW × HT

] 2
}

+
(

pIP − p
′
IP

p
′
IP

)2

(2)

The design variables are a set of IP values composed of 7
asses, 8 mass center components, and 21 moments of iner-

ia. This set accounts for body symmetry and limited motion
f some segments during gait. The initial seed for each IP
alue is its corresponding nominal value from [21]. Due to
inematic noise, the cost function includes a term that min-
mizes changes in IP values away from their initial guesses.

ithout this term, the optimization predicts unrealistic solu-
ions (e.g., negative masses or moments of inertia). Each term
n the cost function is normalized to create non-dimensional
rrors. The residual forces (F) on the pelvis are normalized

y body weight (BW) and the residual torques (T) on the
elvis by body weight × height (BW × HT). IP changes are
ormalized by their respective initial values (p

′
IP). Once an

P optimization converges (i.e., cost function value chang-

d
s
f

meter values are used along with normal and calibration gait data sets to
control parameter values are used in an inverse dynamics optimization to

ng by less than 1e−3 in consecutive optimizer steps), the
ptimal IP values are used as the initial guess for a subse-
uent IP optimization, with this process being repeated until
he resulting residual loads converge (i.e., all residual values
hanging by less than 1e−3 in consecutive IP optimizations).
his optimization formulation is very efficient computation-
lly, eliminating the need to form analytical derivatives with
utomatic differentiation.

The third phase calibrates the model’s CP values by per-
orming a two-level optimization (Fig. 2, Phase 3). The outer
evel optimization adjusts CP values which are used as weight
actors in the inner level cost function. When the optimal CP
alues are found, the inner level optimization predicts a gait
otion and associated loads that minimize the cost function

f the outer level optimization. This problem formulation
equires two sets of gait data—an initial pre-treatment data
et to be tracked and a final calibration data set to be predicted.
ach data set consists of kinematic and ground reaction data
s well as resultant joint torques and pelvis residual loads
omputed from inverse dynamics.
The inner level optimization performs repeated inverse
ynamics analyses of a complete gait cycle (heel strike to sub-
equent heel strike of the same leg) using the current guess
or the CP values along with model or gait data modifica-
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ions (e.g., altered leg geometry or footpath) to represent the
mposed treatment. The cost function (einner, Eq. (3)) min-
mizes kinematic and kinetic changes away from the initial
ait data over nf time frames:

inner = min
q,r

nf∑
i=1

⎡
⎣w1

6∑
j=1

ns∑
k=1

(�q2
foot)ijk + w2

2∑
j=1

(�q2
pelvis)ij

+ w3

3∑
j=1

(�q2
trunk)ij + w4

2∑
j=1

ns∑
k=1

(�CoP2
foot)ijk

+ w5

3∑
j=1

(�F2
pelvis + �T 2

pelvis)ij

+
ns∑

k=1

(w6�T 2
hip flexion + w7�T 2

hip adduction

+ w8�T 2
hip rotation + w9�T 2

knee flexion

+ w10�T 2
ankle dorsiflexion + w11�T 2

ankle inversion)ik
]
(3)

The design variables are 540 (q) and 120 (r) B-spline
odes parameterizing 27 generalized coordinate and 12
round reaction trajectories, respectively, with 20 nodes
er curve. The initial guess for each B-spline node is the
orresponding value from the optimal gait kinematics deter-
ined by the first phase JP optimization for q and from

arameterizing the ground reactions from the same gait trial
or r. Tracking errors (�) between initial and predicted
ait data are summed, over both sides (ns) where possi-
le, for the following quantities: 6 weighted (w1) footpath
ranslations and rotations (qfoot), 2 weighted (w2) pelvis
ransverse plane translations (qpelvis), 3 weighted (w3) trunk
otations (qtrunk), 2 weighted (w4) center of pressure loca-
ions (CoPfoot), 3 weighted (w5) ground-to-pelvis residual
orces (Fpelivs), 3 weighted (w5) ground-to-pelvis resid-
al torques (Tpelivs), 1 weighted (w6) hip flexion–extension
orque (Thip flexion), 1 weighted (w7) hip adduction–abduction
orque (Thip adduction), 1 weighted (w8) hip internal–external
otation torque (Thip rotation), 1 weighted (w9) knee
exion–extension torque (Tknee flexion), 1 weighted (w10)
nkle dorsiflexion–plantarflexion torque (Tankle dorsiflexion),
nd 1 weighted (w11) ankle inversion–eversion torque
Tankle inversion). To eliminate the influence of walking direc-
ion on tracking errors, we measure footpath and pelvis
inematics with respect to a pelvis progression coordinate
ystem whose origin is defined as the pelvis origin, x direction
y the initial and final position of the pelvis origin, y direction
s superior, and z direction as x cross y. To permit CoP track-

ng for altered footpaths, we measure each CoP location on
he bottom of the foot with respect to the foot coordinate sys-
em. The cost function weight w1 is set to 10 to provide tight
racking of each footpath while the weights w2–w5 are set to

t
(
i
t

g & Physics 30 (2008) 434–443

to provide loose tracking of those quantities. The remain-
ng cost function weights w6–w11 on control torque tracking
rrors define the model’s CP values, which keep the predicted
orques in the neighborhood of the initial pre-treatment gait
ata. The predicted gait motion and loads will differ from the
nitial gait data due to modifications added to the model or
re-treatment gait data to represent the simulated treatment.

The outer level optimization is used to calibrate the CP
alues that serve as weights in the inner level cost func-
ion. Thus, each outer level function evaluation is an inner
evel optimization. The outer level cost function (eouter, Eq.
4)) minimizes the difference between predicted (M′) and
easured (M) quantities of clinical significance (e.g., the

xternal knee adduction torque) over nf time frames, where
redicted quantities are produced by the inner level optimiza-
ion through tracking of pre-treatment gait data, and measured
uantities are taken directly from the calibration gait data:

outer = min
pCP

nf∑
i=1

[Mi − M
′
i(pCP)]

2
(4)

The design variables are 6 CP values (pCP) defined by
eights w6–w11 on control torque tracking errors in the inner-

evel cost function (Eq. (3)). Initial CP values are taken as
ero. The quantities appearing in the outer level cost function
re not tracked by the inner level cost function.

Since repeated inner level optimizations would be
xtremely costly computationally, we use quadratic response
urfaces (RSs) as surrogates for the inner level optimizations.
or each time frame i, the prediction error (Mi − M

′
i(pCP)) is

t as a multidimensional quadratic function of the six CP val-
es (pCP). A quadratic RS with six design variables requires
olution of 28 unknown polynomial coefficients. Conse-
uently, we generate a redundant set of 64 six-dimensional
P sample points within the bounds of 0 (i.e., no tracking)

o 10 (i.e., tight tracking) using a Hammersley Quasirandom
equence [24]. We then perform a separate inner level opti-
ization for each of the 64 sample points to characterize the

elationship between input CP values and output prediction
rror at each time frame. Finally, we calculate the 28 RS
oefficients for each time frame via linear least squares using
atlab.
Once quadratic RSs are available, we perform multi-

le outer level optimizations to maximize the likelihood of
nding the global minimum. Each time the outer level opti-
ization performs a function evaluation, we call the RS

pproximations for prediction errors rather than performing
n explicit inner level optimization. We repeat the outer level
ptimization 1000 times using different initial guesses for CP
alues, again using a Hammersley Quasirandom Sequence to
enerate values within the bounds of 0–10. The 6 CP values

hat produce the lowest value of the outer level cost function
Eq. (4)) are used in the calibrated model, and a final explicit
nner level optimization is performed with these CP values
o predict gait kinematics and kinetics.
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Fig. 3. Comparison of left internal knee abduction torque curves for phase 3
control parameter calibration. Initial (solid line) curve is from the patient’s
normal gait pattern measured experimentally, predicted (dashed line) curve is
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The fourth phase of the computational framework predicts
he patient’s post-treatment functional outcome using the cal-
brated model with modifications that represent the simulated
reatment (Fig. 2, Phase 4). No post-treatment experimental
ait data is needed for this phase. Given optimal CP values
rom the third phase, this phase performs an inverse dynam-
cs gait optimization using the inner level cost function from
P calibration (Eq. (3)). Since the simulated treatment dif-

ers from that used for CP calibration, the optimization will
redict a new gait pattern. Some simulated treatments may
nvolve kinematic or kinetic changes (e.g., altered footpath)
hat require the pre-treatment gait data to be modified for
racking purposes. Other simulated treatments may involve
hanges to model parameters (e.g., HTO surgery) that do not
equire modification of the pre-treatment gait data used for
racking.

.4. Framework demonstration

To demonstrate the computational framework, we chose
reatment planning for knee OA as a sample application. Two
pecific treatments were considered, both of which involved
rediction of the post-treatment external knee adduction
orque for the left leg. The first simulated treatment was gait

odification via increased stance width while the second was
TO surgery.
Both simulated treatments were applied to a calibrated

odel constructed of the patient from whom isolated joint
otion and gait data were collected. We calibrated the
odel’s JP and IP values using the patient’s isolated joint
otion and normal gait data and the model’s CP values using

he patient’s normal (as pre-treatment) and toe out (as calibra-
ion) gait data. To approximate toe out gait for CP calibration,
e increased each pre-treatment foot progression angle by
constant offset (approximately 15◦) to match the average

alue measured during toe out gait. We also added small
nterior–posterior and medial–lateral translation offsets to
ach pre-treatment footpath to approximate the patient’s toe
ut footpath as closely as possible using only simple adjust-
ents.
After calibration, the model was used to predict the

atient’s knee adduction torque curve for the two simulated
reatments using the patient’s normal gait data as the pre-
reatment data set. To simulate gait modification with an
ncreased stance width, we increased the lateral translation
f each pre-treatment footpath by a constant offset (approxi-
ately 10 cm) to match the average value of the patient’s wide

tance footpath. We also added small anterior–posterior trans-
ation and progression angle offsets to each pre-treatment
ootpath to approximate the patient’s wide stance footpath
s closely as possible. The wide stance gait data were not
sed explicitly in any optimization step. The adduction torque

urve predicted by the inverse dynamics tracking optimiza-
ion was compared to the experimental adduction torque
urve measured from the same patient during wide stance
ait. To simulate HTO surgery, we left the pre-treatment foot-

a
t
b

rom the toe out gait pattern reproduced by the control parameter calibration
rocess, and final (dotted line) curve is from the patient’s toe out gait pattern
easured experimentally.

ath unchanged and instead modified the geometry of the
eft tibia in a manner consistent with a lateral opening wedge
steotomy. Using standing radiographs from the patient, we
efined the anterior–posterior axis of the osteotomy to be
0 cm inferior and 5 cm lateral to the midpoint of the transepi-
ondylar axis. The post-treatment knee adduction torque was
imulated for 3, 5, and 7◦ of correction, and the predictions
ere compared with data reported in literature for the same

orrections [2,25].

. Results

After calibration, the patient-specific model matched the
wo peaks and the shape of the toe out gait adduction torque
urve well (Fig. 3). The first peak was underestimated by
.08% BW × HT and occurred at the correct time in the
ait cycle. The second peak was overestimated by 0.18%
W × HT and was delayed slightly (1.61% of gait cycle).
he root-mean-square (RMS) error in the predicted knee
dduction torque curve was 0.16% BW × HT over the stance
hase. By comparison, the RMS difference between adduc-
ion torque curves for the same subject over three separate
rials of toe out gait was 0.21% BW × HT. The optimal
et of CP values varied in magnitude (Table 1), with more
racking weight placed on the hip flexion–extension, ankle
orsiflexion–plantarflexion, and ankle inversion–eversion
orques than on the other leg control torques. RMS errors in
redicted kinematic and kinetic quantities were within 6◦ for
oint angles, roughly 10 mm for centers of pressure, between
.21 and 0.76% BW × HT for joint torques, and less than 5%
W for ground reaction forces (Table 2, Toe Out).
When the calibrated model was used to predict the knee
dduction torque for the patient’s wide stance gait pattern,
he peak values agreed better than did the shape of the curve
etween the peaks (Fig. 4). The first peak was overestimated



440 J.A. Reinbolt et al. / Medical Engineering & Physics 30 (2008) 434–443

Table 1
Chosen (w1–w5) and calibrated (w6–w11) tracking weights used in the inner
level inverse dynamics optimization cost function (Eq. (3))

Variable Value

w1 10.00
w2 1.00
w3 1.00
w4 1.00
w5 1.00
w6 5.17
w7 0.36
w8 1.08
w9 0.29
w10 5.55
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Fig. 4. Comparison of left internal knee abduction torque curves for phase
4 prediction of treatment outcome due to gait modification with increased
stance width. Initial (solid line) curve is from the patient’s normal gait pattern
measured experimentally, predicted (dashed line) curve is from the wide
stance gait pattern predicted by the calibrated patient-specific optimization,
and final (dotted line) curve is from the patient’s wide stance gait pattern
measured experimentally.
11 9.17

he calibrated weights are determined in the third phase of the computational
ramework.

y 0.10% BW × HT and was delayed slightly (2.42% of
ait cycle). The second peak was overestimated by 0.02%
W × HT and occurred slightly early (0.81% of gait cycle).
he RMS error in the predicted knee adduction torque curve
as 0.24% BW × HT over the stance phase. By comparison,

he RMS difference between adduction torque curves for the
ame subject over three separate trials of wide stance gait
as 0.23% BW × HT. RMS errors in predicted kinematic

nd kinetic quantities were within 5◦ for joint angles, on the
rder of 10 mm for centers of pressure, between 0.24 and
.52% BW × HT for joint torques, and less than 5% BW for
round reaction forces (Table 2, Wide Stance).

When the calibrated model was used to predict the

atient’s knee adduction torque following simulated HTO
urgery, the peak values decreased as the angle of correc-
ion increased (Fig. 5). The first peak decreased nonlinearly

able 2
oot-mean-square (RMS) errors during stance phase between patient-

pecific toe out and wide stance gait predictions generated using the
omputational framework and toe out and wide stance gait measurements
ade on the same patient

uantity RMS error

Toe Out Wide Stance

ip flexion angle (◦) 3.11 4.25
ip abduction angle (◦) 2.63 2.37
ip rotation angle (◦) 5.73 2.79
nee flexion angle (◦) 2.58 2.68
nkle flexion angle (◦) 2.96 4.79
nkle inversion angle (◦) 4.45 3.91
nterior center of pressure (mm) 13.24 10.49
ateral center of pressure (mm) 9.22 10.97
ip flexion torque (%BW × HT) 0.76 0.52
ip abduction torque (%BW × HT) 0.38 0.35
ip rotation torque (%BW × HT) 0.21 0.28
nee flexion torque (%BW × HT) 0.25 0.40
nee adduction torque (%BW × HT) 0.16 0.24
nkle flexion torque (%BW × HT) 0.69 0.49
nkle inversion torque (%BW × HT) 0.48 0.45
nterior ground reaction force (%BW) 1.74 1.30
uperior ground reaction force (%BW) 5.06 4.92
ateral ground reaction force (%BW) 0.41 2.25

Fig. 5. Comparison of left internal knee abduction torque curves for phase
4 prediction of treatment outcome due to simulated opening wedge high
tibial osteotomy. 0◦ (solid line) curve is from the patient’s normal gait pat-
tern measured experimentally, and 3◦ (dashed line), 5◦ (dotted line), and 7◦
(
b
c

a
a
c
[
t
f
B

4

t
g

dashed-dotted line) curves are from the post-surgery gait patterns predicted
y the calibrated patient-specific optimization for three levels of angular
orrection.

nd the second peak approximately linearly as a function of
ngular correction amount. Compared with adduction torque
hanges following HTO surgery reported in the literature
2,25], the peak value decreased by 0.71% BW × HT for
he 3◦ case (versus 1.1% BW × HT in [2]), 1.2% BW × HT
or the 5◦ case (versus 1.3% BW × HT in [2]), and 1.7%
W × HT for the 7◦ case (versus 1.6% BW × HT in [2]).

. Discussion
This study presented a novel computational framework
o predict post-treatment gait changes given pre-treatment
ait data for a specific patient. The framework utilizes a
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our-phase optimization approach to calibrate a dynamic,
ull-body gait model to a patient’s movement data and then
se the calibrated model to predict post-treatment functional
utcome. The framework was demonstrated by predicting
hanges in the external knee adduction torque as observed
xperimentally for different gait motions or reported in the
iterature for HTO surgery. Though the approach was suc-
essful for one patient and the current data sets, simulation
f a larger number of patients and wider variety of treatments
s needed to evaluate the approach more fully. In particular,
full evaluation of our simulated HTO results would require
ait testing of a patient before and after HTO surgery, which
s difficult in the United States since few surgeons continue
o perform this procedure.

The current computational framework has several limi-
ations related to assumptions in both the model and the

ethodology. For the model, a pin joint knee was chosen
o represent the primary flexion–extension motion that dom-
nates secondary knee motions during gait. To eliminate the
ffect of this approximation on the calculated knee adduction
orque, we use only the foot and shank from the full-body

odel to calculate an unconstrained adduction torque curve.
e then place a large weight on shank segment marker

oordinate errors to ensure that the curve produced by the
ull-body model with pin joint knee matches the curve pro-
uced by the foot-shank model with unconstrained knee. A
igid foot model without an explicit ground contact model
as selected to increase computational speed and exploit the

bility to prescribe a desired footpath for the inverse dynamics
ptimization. For the methodology, the primary assumption
s that after treatment, the patient will move in a manner
imilar to before treatment, thereby motivating the need for
re-treatment movement data to be tracked.

Toe out gait was selected for CP calibration to obtain the
argest change in knee adduction torque compared to the nor-
al gait pattern. If we had chosen wide stance gait instead for
P calibration, we would have likely obtained different CP
alues since the changes in the knee adduction torque curve
elative to normal gait were less pronounced. Furthermore,
he CP values identified in phase three depend on the weights
hosen for the other tracking terms. For example, if the weight
n center of pressure tracking errors was calibrated as well,
he calibrated weights for control torque tracking would likely
hange. Although referred to as control parameters, the cali-
rated cost function weights do not have an obvious physical
nterpretation tied to neural control strategies. Nonetheless, it
ppears reasonable to assume that the patient’s post-treatment
ait pattern will be a neighboring solution to the pre-treatment
ait pattern. Furthermore, the motion for CP calibration must
e chosen such that an envelope of feasible joint torques
s produced that contains a neighborhood of motions large
nough to result in the predicted motion.
The necessary phases of the computational framework
ary depending on the particular treatment planning appli-
ation. It is possible to remove JP calibration, IP calibration,
nd/or CP calibration from the workflow, replacing omitted
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d
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hases with parameter values obtained from anatomical land-
ark methods (JP and IP values) or with all ones (CP values).
hen we removed JP calibration from the workflow, we were

nable to find CP values that could accurately reproduce the
oe out and wide stance gait adduction torque curves. In con-
rast, when we removed IP calibration from the workflow, the
ecrease in prediction accuracy was small for both gait pat-
erns. These findings are consistent with a recent Monte Carlo
nalysis we performed, where we found that inverse dynam-
cs results from our patient-specific model are sensitive to
rrors in JP but not IP values [26]. If we remove CP calibra-
ion from the workflow, we will not be able to predict how a
atient will likely walk following a proposed treatment. How-
ver, if the goal is to determine how a patient should walk, CP
alibration is no longer necessary, since the patient’s control
trategy is assumed to be changeable. For example, using CP
alues of 1 and no change in footpath, we recently predicted a
ovel gait pattern that successfully reduced both knee adduc-
ion torque peaks significantly when implemented in the gait
aboratory by a single patient with knee OA [27].

When CP calibration is needed, there are several advan-
ages to using quadratic response surfaces in place of repeated
nner level optimizations. The primary advantage is compu-
ational speed. With this approach, the computational cost
f the inner level optimizations is known in advance (64
uns) and paid only once up front. Furthermore, each inner
evel optimization can be performed in parallel on a differ-
nt computer. Another important advantage is the ease with
hich the global minimum can be sought using either mul-

iple gradient-based optimizations, as we did in this study,
r a global optimizer. If one wishes to investigate the effect
f optimization parameter settings (e.g., convergence toler-
nce, finite difference step size) on the solution, repeating
he outer level optimization is computationally cheap with
esponse surfaces.

The current version of our computational framework pro-
ides a variety of modeling alternatives. Model motion and
round reaction inputs to the inverse dynamics model can
e parameterized using either the default B-spline nodes or
olynomial plus Fourier coefficients [28]. The advantage of
-spline over polynomial-Fourier parameterization is that all
f the design variables have similar magnitude, eliminating
esign variable scaling issues if finite difference gradients are
sed in the optimizations. However, use of automatic differ-
ntiation to create analytical gradients eliminates this scaling
ssue. A drawback of using B-spline nodes is that the lack of
ata points prior to the start and beyond the end of the cycle
an create small kinematic oscillations resulting in control
orque variations in the initial and final time frames.

We can also perform optimizations in two different
imulation environments. Apart from our custom environ-
ent created using Matlab and C++, we can use the

IMM/Dynamics Pipeline environment (Motion Analysis
orporation, Santa Rosa, CA) to perform the same optimiza-

ions but without the computational benefits of automatic
ifferentiation. Once the joint and inertial parameter cal-
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bration process is completed in phases one and two, we
utomatically create a SIMM joint file into which all of the
ptimized joint and inertial parameter values are written. An
dvantage of having a patient-specific joint file is that it facil-
ties animation of experimental and predicted gait motions.
part from the lack of automatic differentiation, another dis-

dvantage of the SIMM/Pipeline approach is the large amount
f disk input/output required to run the executable repeatedly
uring an optimization, which greatly degrades performance.

The computational speed of our patient-specific model-
ng framework is already close to what would be needed for
se in a clinical environment. Optimization of each isolated
oint motion trial requires approximately 3 min of CPU time.
he inertial parameter optimization requires less than 1 min.

f joint and inertial parameters are optimized together using
ne cycle of gait data, the CPU time is on the order of 1
/2 min. Each post-treatment predictive optimization using
utomatic differentiation requires approximately 10 min of
PU time. Finally, 1000 optimizations to calibrate control
arameters using response surface approximations require
oughly 10 min of CPU time. Computational speed was
ssessed on a 3.4 GHz Pentium 4 workstation with 2.00 GB
f RAM.

In conclusion, we have developed a computational frame-
ork that can be used to predict a patient’s post-treatment gait
otion and loads given the patient’s pre-treatment gait data.
ur motivation for developing the framework is to improve
lanning of surgical and rehabilitation treatments for gait-
elated disorders. The ability to simulate new gait motions
rom a patient’s pre-treatment gait data opens up exciting pos-
ibilities for improving the efficacy and reliability of clinical
nterventions. However, evaluation of the framework using a
arger number of patients and wider variety of treatments is
eeded to assess its limitations and capabilities more fully.
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