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Residual Elimination Algorithm
Enhancements to Improve Foot
Motion Tracking During Forward
Dynamic Simulations of Gait
Patient-specific gait optimizations capable of predicting post-treatment changes in joint
motions and loads could improve treatment design for gait-related disorders. To maximize
potential clinical utility, such optimizations should utilize full-body three-dimensional
patient-specific musculoskeletal models, generate dynamically consistent gait motions that
reproduce pretreatment marker measurements closely, and achieve accurate foot motion
tracking to permit deformable foot-ground contact modeling. This study enhances an exist-
ing residual elimination algorithm (REA) Remy, C. D., and Thelen, D. G., 2009, “Optimal
Estimation of Dynamically Consistent Kinematics and Kinetics for Forward Dynamic Sim-
ulation of Gait,” ASME J. Biomech. Eng., 131(3), p. 031005) to achieve all three require-
ments within a single gait optimization framework. We investigated four primary
enhancements to the original REA: (1) manual modification of tracked marker weights, (2)
automatic modification of tracked joint acceleration curves, (3) automatic modification of
algorithm feedback gains, and (4) automatic calibration of model joint and inertial param-
eter values. We evaluated the enhanced REA using a full-body three-dimensional dynamic
skeletal model and movement data collected from a subject who performed four distinct
gait patterns: walking, marching, running, and bounding. When all four enhancements
were implemented together, the enhanced REA achieved dynamic consistency with lower
marker tracking errors for all segments, especially the feet (mean root-mean-square
(RMS) errors of 3.1 versus 18.4 mm), compared to the original REA. When the enhance-
ments were implemented separately and in combinations, the most important one was auto-
matic modification of tracked joint acceleration curves, while the least important
enhancement was automatic modification of algorithm feedback gains. The enhanced REA
provides a framework for future gait optimization studies that seek to predict subject-
specific post-treatment gait patterns involving large changes in foot-ground contact pat-
terns made possible through deformable foot-ground contact models.
[DOI: 10.1115/1.4031418]
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Introduction

Clinical conditions affecting the neuromusculoskeletal system
(e.g., osteoarthritis [1], stroke [2], Parkinson’s disease [3]) can
significantly limit walking function and are primary causes of dis-
ability among U.S. adults. Such conditions cost the U.S. economy
billions of dollars annually in medical care and lost productivity
[4]. Furthermore, as walking ability diminishes, quality of life
decreases and the risk of death increases [5–7], making restoration
of walking function a critical problem for public health. Current
treatment design methods for these conditions rely heavily on sub-
jective clinical judgment and have been largely ineffective at
restoring normal walking function [8]. This observation suggests
that new treatment design methods are necessary to address the
unique challenges posed by these clinical conditions.

Computational walking models employing multibody dynamic
modeling methods could augment current treatment design meth-
ods by permitting objective and personalized exploration of differ-
ent treatment options prior to making the final decision. For
example, such models could be used to evaluate whether gait
modification is likely to achieve the same reduction in peak knee

adduction moment as would high tibial osteotomy surgery for a
specific patient. To predict a patient’s post-treatment walking
function starting from the patient’s pretreatment walking data, a
computational model should ideally fulfill at least seven require-
ments. First, it should be three-dimensional, since clinical prob-
lems are often related to motions and loads outside the sagittal
plane (e.g., the knee adduction moment in knee osteoarthritis [9]).
Second, it should be full body including the arms, since modeling
the arms is necessary to predict walking motions for clinical situa-
tions where the arms naturally move and affect body dynamics.
Third, it should be patient-specific, at a minimum calibrating joint
positions and orientations along with segment masses, mass cen-
ters, and moments of inertia to the patient’s pretreatment move-
ment data [10]. Fourth, it should be dynamically consistent,
meaning that the six full-body dynamics equations are satisfied
exactly rather than to some arbitrarily defined level. Fifth, it
should reproduce pretreatment experimental marker data closely,
providing a realistic starting point for subsequent optimizations
that predict new gait patterns. Sixth, it should also reproduce pre-
treatment experimental ground reaction forces and moments
closely using a deformable foot-ground contact model, thereby
permitting prediction of new gait patterns that require new foot-
ground contact patterns (e.g., going from toe striking to heel strik-
ing). Finally, it should predict clinically important quantities that
could aid in the treatment design process (e.g., post-treatment
walking speed and symmetry).
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A number of research groups have made important
strides in this area, achieving some but not all of these require-
ments (Table 1). Many studies have used three-dimensional walk-
ing models [11–21]. However, only a subset of those studies
either included modeling the motion of the arms [12–16,20] or
were dynamically consistent [11,13,16–18], with very few satisfy-
ing both criteria [13,16], making prediction of clinically realistic
walking motions difficult. Many studies used deformable foot-
ground contact models [11,17,18,22–27], which permit prediction
of new foot paths. However, only a small number of those studies
predicted novel walking motions for which no experimental data
were available [18,23,25–27]. Even fewer studies generated walk-
ing predictions that have potential clinical utility [15,22,24,27].
Rarely did studies calibrate joint and inertial parameter values to
the subject’s movement data [15]. Omitting calibration of joint pa-
rameters (i.e., joint positions and orientations in their segment
frames) can have a significant effect on simulated joint moments
[28]. Thus, new methods need to be developed that cover the
broadest possible spectrum of these requirements.

This study describes the development of a computational algo-
rithm that fulfills the first five requirements listed above, provid-
ing a stepping stone for future efforts that will seek to fulfill all
seven requirements. The algorithm is a natural extension of the
“Residual Elimination Algorithm” (REA) published by Remy and
Thelen in 2009 [13], which generates forward dynamic walking
simulations that closely reproduce experimental gait data. While
that algorithm tracks marker positions closely using a dynamically
consistent three-dimensional walking model, it does not permit cal-
ibration of model parameter values, nor are foot marker motions
tracked as closely as necessary for future inclusion of a deformable
foot-ground contact model. To calibrate model parameter values
and achieve better tracking of foot markers, we developed an
enhanced REA that adjusted: (1) marker weights, (2) tracked accel-
eration curves, (3) feedback gains, and (4) joint and inertial param-
eter values. While the marker weights are adjusted manually, each
of the remaining changes is automated within the enhanced REA
framework. We explored each modification individually and in
combinations to determine which ones yielded the lowest foot and
overall marker tracking errors. In addition, since greater back flexi-
bility may help the model achieve better marker tracking, we also
explored the potential benefit of using a two-joint back model with
and without additional degrees of freedom (DOFs).

Methods

Enhanced REA Gait Model. We used a modified version of
an existing three-dimensional full-body dynamic skeletal model
(i.e., no muscles included) to develop and evaluate our enhanced
REA. The existing skeletal model possesses 14 segments and
27 DOFs [15]. The ankles were modeled as two non-intersecting
pin joints, the knees as pin joints, the hips as ball-and-socket
joints, the back as a ball-and-socket joint at approximately the L4-
L5 level, the shoulders as universal joints, and the elbows as pin
joints, with the pelvis being connected to ground via a 6 DOF
joint that allows translation and rotation of the model in the labo-
ratory reference frame.

We made two modifications to this model to explore how
increased model complexity affects marker tracking errors. First,
to accommodate nonsagittal arm motion, we added internal/exter-
nal rotational DOFs to both shoulders, thereby increasing the
number of DOFs to 29 (Fig. 1(a)). Second, we split the back into
two segments by adding a second ball-and-socket joint at the T8-
T9 level, further increasing the number of DOFs to 32 (Fig. 1(b)).
The additional shoulder DOFs were used in all evaluations, while
the additional back DOFs were treated three ways to explore how
back flexibility affected the results: (1) upper back joint locked so
that all motion occurred in the lower back joint (29 DOFs), (2)
upper back joint prescribed to move identically to lower back joint
(29 DOFs), and (3) upper back joint free to move independently
from lower back joint (32 DOFs). To illustrate the second case,
when the lower back is extended by three degrees, the upper back
will be extended by three degrees relative to the lower back seg-
ment. Our model has two more DOFs than the model used to de-
velop the original REA [13] since we modeled the ankle as two
nonintersecting and nonorthogonal pin joints rather than as a sin-
gle pin joint. We derived the equations of motion for each model
using Autolev symbolic manipulation software (Motion Genesis,
Palo Alto, CA). All optimizations were performed using Matlab’s
(The Mathworks, Natick, MA) nonlinear least squares algorithm
with forward finite differences used to calculate gradients.

Enhanced REA Development. The original REA [13] finds
new initial conditions and generalized accelerations that produce
a dynamically consistent walking motion (i.e., fictitious pelvis re-
sidual loads eliminated) while tracking experimentally measured

Table 1 Summary of published studies that use computational walking models and their fulfillment of requirements for maximiz-
ing potential clinical utility. Only walking models published between 2000 and the present were included. When related papers
from the same lab appear in different years, only one of those papers was included as being representative.

Study

Gait
model

dimensionality

Model
with
arms

included?

Joint and
inertial

parameters
calibrated?

Dynamically
consistent

model?

Experimental
motion

tracked?

Deformable
foot-ground

contact
model?

Novel
gait

motion
predicted?

Clinically
useful

information
predicted?

Jansen et al. (2014) [20] 3D Yes No No Joints No No No
Allen et al. (2013) [11] 3D No No Yes Joints Yes No No
Fey et al. (2013) [22] 2D No No Yes Joints Yes No Yes
Miller et al. (2013) [27] 2D No No Yes Joints Yes Yes Yes
Thompson et al. (2013) [21] 3D No No No Joints No No No
Ackermann and
van den Bogert (2012) [23]

2D No No Yes Joints Yes Yes No

Higginson et al. (2011) [19] 3D No No No Joints No No No
van den Bogert et al. (2011) [24] 2D No No Yes Joints Yes No Yes
Xiang et al. (2011) [12] 3D Yes No No Joints No Yes No
Halloran et al. (2010) [25] 2D No No Yes Joints Yes Yes No
Mahboobin et al. (2010) [26] 2D No No Yes Joints Yes Yes No
Remy and Thelen (2009) [13] 3D Yes No Yes Markers/joints No No No
Kim et al. (2008) [14] 3D Yes No No N/A No Yes No
Fregly et al. (2007) [15] 3D Yes Yes No Markers No Yes Yes
Thelen and Anderson (2006) [16] 3D Yes No Yes Joints No No No
Arnold et al. (2005) [17] 3D No No Yes Joints Yes No No
Anderson and Pandy (2001) [18] 3D No No Yes Joints Yes Yes No
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marker positions closely. To accomplish these goals, the algo-
rithm uses the matrix pseudo-inverse to solve an underdetermined
linear system of six whole-body dynamics equations (in which no
net joint forces or moments appear) for 32 generalized accelera-
tion variations ðd€qÞ. These variations define the minimum magni-
tude change in the model’s generalized accelerations ð€qÞ away
from a desired set of generalized accelerations ð€q�Þ:

€q ¼ €q� þ d€q (1)

The desired generalized accelerations are determined by applying
an optimal feedback strategy to experimental joint motion data

€q� ¼ €q0 þ kvð _q0 � _qÞ þ kpðq0 � qÞ (2)

In this equation, kp is a feedback gain on joint position error, kv is
a feedback gain on joint velocity error, q and _q are the model gen-
eralized coordinate and velocity values, respectively, and q0, _q0,
and €q0 are the experimental generalized coordinate, velocity, and
acceleration values, respectively, derived from an initial inverse
kinematics analysis. At the initial time frame, Eq. (2) and the ini-
tial model state ðq; _qÞ are used to calculate the initial desired gen-
eralized accelerations ð€q�Þ, which in turn via Eq. (1) are used in
the six whole-body dynamics equations to solve for the general-
ized acceleration variations ðd€qÞ. The model generalized accelera-
tions ð€qÞ (which will satisfy the whole-body dynamics equations
exactly) are then updated based on Eq. (1) and numerically inte-
grated, and the process is repeated for each subsequent time
frame. Using the initial model state as design variables, an optimi-
zation repeats the entire process until errors between experimental
and model marker positions are minimized.

To improve the ability of the original REA to match measured
marker positions accurately, we investigated four modifications to
the algorithm (Fig. 2). First, to improve foot marker tracking, we
adjusted the marker tracking weights in the original REA cost
function. The original weights were 5 for the dynamic lower body
markers and 1 for the remaining markers [13]. We increased the

weight on the three hindfoot markers to 100 to track the feet
closely and the weight on the shoulder markers to 10 to prevent
the trunk from falling over. We chose large foot marker weights
to encourage achievement of hindfoot marker errors within 1 mm
of the best-case solution produced when each hindfoot was treated
as an isolated free body [29]. All other marker weights were less
than 10 (see below) and manually chosen to maintain hindfoot
marker errors within 1 mm of the best-case solution for the four
tasks used in this study. Since the foot was modeled as a single
rigid body, we only tracked the motion of the three hindfoot

Fig. 2 Schematic of our enhanced REA (modified from [13]).
Experimental marker coordinates c0 and ground reactions F 0

are input to the algorithm. The algorithm adjusts model initial
conditions q0 and _q0, assumed experimental joint kinematics
q0, _q

0
, €q 0, model inertial and joint parameter values m, I, p, and

optimal feedback gains kp and kv . Generalized accelerations €q
calculated by residual elimination are numerically integrated to
determine corresponding generalized speeds _q and coordi-
nates q. An inverse kinematics analysis is then used to calcu-
late corresponding model marker coordinates c, which are
compared with experimental marker coordinates at the same
time frame.

Fig. 1 Schematics of the 29 DOF one back joint (a) and 29 or 32 DOF two back joint (b) full-
body gait models used to evaluate the enhanced REA. The static markers for both the right
and left legs are the medial and lateral knee, the medial and lateral ankle, and the medial and
lateral toe joint markers. Dark blue circles indicate static markers removed after the static trial
and light red circles indicate dynamic markers.
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markers and set the toe marker weight to zero. Marker weights
were the only manual modifications made to the algorithm. The
remaining modifications were automated within the enhanced
REA optimization methodology.

Second, to account for errors in the experimental q0, _q0, and €q0

curves being used in Eq. (2), we allowed our REA to adjust these
curves automatically. The experimental q0 curves have errors
since they are obtained from an initial inverse kinematics analysis
using noisy marker data, and the experimental _q0 and €q0 curves
have errors since they are produced by differentiating inaccurate
q0 curves [30]. We parameterized the initial q0 curves using a com-
bination of polynomial and Fourier coefficients [31], thereby
allowing us to calculate the associated _q 0 and €q0 curves analyti-
cally. This approach has worked well for previous studies
[10,32,33]. We then treated these coefficients as design variables
to be adjusted by the optimization. We used 20 coefficients to
parameterize each of the 29 or 32 q0 curves as follows:

€qj ¼ a0 þ a1tþ a2t2 þ a3t3 þ
X8

k¼1

að2kþ2Þ cosðkxtÞ

þ
X8

k¼1

að2kþ3Þ sinðkxtÞ (3)

where €qj are the 29 or 32 acceleration curves, a0 through a19 are
the polynomial and Fourier coefficients, t is the time, and x is the
angular frequency. This parameterization method essentially
smoothes the kinematic trajectories being tracked by the feedback
controller but not the marker coordinates being tracked by the
cost function. This modification added 580 or 640 design varia-
bles (depending on how the back joint was modeled) to the opti-
mization, which significantly increased computation time. Since
these kinematic parameterization coefficients remained design
variables during optimization of each trial, their values differed
between trials.

Third, to improve the performance of the feedback control sys-
tem, we changed the single kp gain in the original formulation into
nine kp gains adjusted by the optimization, with each value con-
trolling a different set of generalized coordinates. In the original
REA, the position gain was 100 and the velocity gain was 20 for
all DOFs. In our modified formulation, we used an initial guess of
100 for each of our nine position gains: three pelvis translations (1
gain), three pelvis rotations (1 gain), all back rotations (1 gain),
all arm DOFs (1 gain), 2 DOFs for each ankle (4 gains), and the
remaining lower body DOFs (1 gain). We defined the associated
kv gains by

kv ¼ 2
ffiffiffiffiffi
kp

p
(4)

which drives the feedback error terms to zero in a critically
damped manner [34].

Fourth, to improve marker tracking while maintaining zero pel-
vis residual loads, we included lower body joint and inertial pa-
rameter values as additional design variables in the optimizations.
We allowed the masses and inertias of each body segment to be
adjusted by up to 10% from their initial values calculated from the
literature [35]. We also allowed joint parameter values for the
lower body segments, as well as center of mass locations for all
segments, to be adjusted by up to 5 mm or 5 degrees from their
initial values calculated from the literature [35]. None of these
limits were reached in any of our optimizations.

Enhanced REA Evaluation. We evaluated our enhanced REA
using experimental gait data collected from a single healthy sub-
ject (male, age 46, height 1.7 m, weight 69 kg) who performed
four gait tasks: walking, marching, running, and bounding. The
study was institutional review board approved, and the subject
gave informed consent prior to testing. Surface marker positions
were measured using a 14-camera Vicon motion capture system

(Vicon Motion Systems, Inc., Lake Forest, CA), while ground
reaction forces and moments were measured using three Bertec
force plates (Type 4060-08, Bertec Corp., Columbus, OH). The
data collection protocol and marker set were identical to a previ-
ous study [15]. Four markers were placed on each foot (including
a toe marker), three on each shank and thigh, three on the pelvis,
four on the torso, and one on each elbow and wrist. Markers on
the same body segment were not part of a rigid cluster. This
marker set permitted tight tracking of lower body segment
motions and less stringent tracking of upper body segment
motions. To facilitate REA evaluation, we collected five trials of
each gait pattern with clean strikes on all three force plates.

Using these data and the three variations of our full-body gait
model, we followed a four-step process to evaluate our enhanced
REA. First, we calibrated the joint and inertial parameter values
in each model using data from a single walking trial. From the
five recorded walking trials, the one with the walking speed clos-
est to the mean of all five trials was chosen for this step. As part
of this step, we also manually selected an initial set of marker
weights (pelvis: 8, thigh: 2.8, shank: 1.2, toe: 0, arms: 3, trunk:
0.2, and xiphoid: 1.5) that tracked hindfoot markers as closely as
possible without degrading the tracking of other segment markers.
The cost function minimized marker tracking errors, changes in
joint and inertial parameter values away from their initial values,
and differences between the initial and final state (i.e., near-
periodic motion).

Second, using the calibrated joint and inertial parameter values
from the first step, we manually determined one refined set of
marker weights for all three models (pelvis: 9, thigh: 3.8, shank:
1.7, toe: 0, arms: 4, trunk: 0.2, and xiphoid: 3.2) using data from
the same walking trial plus data from a single bounding trial. This
bounding trial was chosen in a manner similar to the selected walk-
ing trial. We added a bounding trial to this step since bounding was
our most dynamic task and we wanted to ensure that the enhanced
REA could be used reliably for various locomotion tasks. Marker
weights were manually chosen that yielded the lowest root-mean-
square (RMS) marker distance errors for the selected bounding trial
without significantly degrading the RMS marker distance errors for
the selected walking trial. Therefore, there was a trade-off between
walking and bounding motions when selecting a single set of
marker weights that worked well for all three models. Manual
selection of tracking weights is not novel. However, the model can
only be calibrated using one trial at a time, and we wanted to
choose weights that worked well for all four tasks, which prevented
automatic selection of the tracking weights.

Third, the chosen marker weights for all models and joint and
inertial parameter values for each model from the first two calibra-
tion steps were used to test the enhanced REA on four walking tri-
als excluded from calibration. The cost function for this testing
step minimized marker coordinate errors and enforced approxi-
mate periodicity. Since gait is a near-periodic motion (i.e., gener-
alized coordinate values over one gait cycle end close to their
initial values), we enforced approximate periodicity by including
cost function terms that kept the difference between initial and
final values within five degrees for rotational coordinates. In addi-
tion to walking, we also investigated how well our enhanced REA
performed for all five running, four marching (one trial had proc-
essing problems), and the four remaining bounding trials.

Fourth, the impact of each enhancement was evaluated individ-
ually and in all combinations using the same calibration walking
trial with the 29 DOF one back joint model (1BJM) (chosen based
on results from the previous step) to determine which enhance-
ment(s) yielded the lowest RMS marker distance errors compared
with those produced by the original REA.

Results

The enhanced REA significantly reduced foot marker
errors while also reducing overall leg marker errors for walking
(Table 2). Compared to the original REA, all segment marker
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errors were reduced for each of the three gait models except for a
slight increase in the trunk marker errors for the 29 DOF two back
joint model. The single back joint model yielded the lowest foot
marker errors (3.1 mm) compared to the other models (16.0 mm
for the original REA, 3.4 mm for 2BJM-D, and 3.3 mm for 2BJM-
I) and second lowest overall marker error. While the 32 DOF two
back joint model had the highest pelvis marker errors, it produced
some of the smallest marker errors for other segments. Despite

having the lowest pelvis marker errors, the 29 DOF two back joint
model did not improve upper body marker errors and produced
the highest overall marker errors of the three models. Foot
markers were tracked closely for all three models with RMS errors
within approximately 1 mm of the best-case solution produced
when each hindfoot segment was treated as an isolated free body.
Pelvis residual forces and torques remained below 1� 10�12 N
and 1� 10�12 Nm, respectively, for all cases.

Fig. 3 Comparison between experimental markers (dark blue circles) and model markers
(light red dots) for walking, marching, running, and bounding at 0%, 25%, 50%, 75%, and 100%
of the locomotion cycle. Units are in meters.
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The enhanced REA was also able to eliminate residual loads
for the three other gait tasks while minimizing segment marker
errors (Fig. 3). The mean RMS marker distance errors were gener-
ally higher for the more dynamic motions of running and bound-
ing compared to walking and marching (Fig. 4). Foot markers

were tracked closely for all locomotion tasks with considerably
lower mean RMS errors compared to all other segments (mean
RMS foot marker errors were 4.0 mm for gait, 3.7 mm for march-
ing, 4.8 mm for running, and 5.7 mm for bounding). The pelvis re-
sidual forces and torques remained below 1� 10�11 N and
1� 10�11 Nm, respectively, for all tasks.

Compared to results from the original REA, all enhancements
individually and in combinations reduced RMS foot marker dis-
tance errors, though some enhancements increased RMS marker
distance errors for other segments (Table 3). For each individual
enhancement, the tracked acceleration curve adjustments and the
marker weight adjustments yielded the lowest (7.8 mm) and high-
est (16.3 mm) mean RMS foot marker errors, respectively, while
most segment marker errors were lower than those produced by
the original REA. For pairs of enhancements, the marker weight
and tracked acceleration curve adjustments pairing resulted in the
lowest mean RMS foot marker errors (4.1 mm), while the marker
weight and feedback gain adjustments pairing resulted in the high-
est RMS foot marker errors (12.6 mm). The lowest mean RMS
foot marker error was achieved by leaving out the feedback gain
adjustments from the enhanced REA, though the reduction was
trivial (3.07 mm compared to 3.14 mm). All mean RMS segment
marker errors were lower for this combination of three enhance-
ments, as well as for the combination of all four enhancements,
compared to the original REA.

Discussion

This study evaluated improvements to the original REA devel-
oped by Remy and Thelen [13] with the goal of tracking foot
marker trajectories more closely and calibrating model parameter
values while still maintaining dynamic consistency. Use of all
four modifications together resulted in significantly better foot
marker tracking as well as somewhat improved leg marker track-
ing. The omission of feedback gain adjustments yielded slightly
better results overall, though the improvements were small, sug-
gesting that feedback gain adjustment was not worth the computa-
tional effort. The improved foot marker tracking produced by
these enhancements may facilitate the development of predictive
gait optimizations that include deformable foot-ground contact
models to permit changing foot interactions with the ground.

Compared to results from the original REA, all four modifica-
tions resulted in some marker error improvements and slightly
altered kinematics (Table 2). To account for inaccuracies in the
experimental kinematic data, we allowed the tracked position, ve-
locity, and acceleration curves to vary, resulting in small but rea-
sonable changes in the marker trajectories produced by our

Table 2 Mean RMS marker distance errors between the 29 DOF
one back joint model using the original REA, 29 DOF one back
joint model using the enhanced REA (1BJM), 29 DOF two back
joint model (one back joint dependent on the other) using the
enhanced REA (2BJM-D), and 32 DOF two back joint model (both
back joints independent) using the enhanced REA (2BJM-I).
All results are for the calibration walking trial. Units are in mm.

Segment Original REA 1BJM 2BJM-D 2BJM-I

Pelvis 16.7 14.5 14.3 16.5
Thigh 20.8 19.2 19.0 18.9
Shank 17.9 13.0 12.6 12.5
Foot 16.0 3.1 3.4 3.3
Arm 34.9 19.1 19.3 17.6
Trunk 25.9 21.7 26.1 21.2
Leg 18.0 12.1 12.0 12.3
All 22.3 14.8 15.3 14.5

Table 3 Mean RMS marker distance error comparison for individual and combinations of modifications for the enhanced REA.
Modifications are defined as: Mod 1 5 marker weights, Mod 2 5 tracked acceleration curves, Mod 3 5 feedback gains, and Mod
4 5 model parameters. All results are for the calibration walking trial. Units are in mm. Bold text indicates the two best combina-
tions of modifications.

Segment Pelvis Thigh Shank Foot Arm Trunk Leg All

Original REA 16.3 20.0 18.3 18.4 36.7 26.2 18.5 23.2
Mod 1 19.6 21.0 17.7 16.3 40.6 29.6 18.5 24.3
Mod 2 12.7 19.6 15.4 7.8 24.7 25.2 14.1 17.1
Mod 3 14.4 16.7 15.0 12.9 37.6 26.0 14.8 20.6
Mod 4 14.6 16.1 15.4 16.0 28.1 23.7 15.6 19.4
Mods 1 and 2 18.1 23.3 17.0 4.1 24.5 27.6 15.3 18.5
Mods 1 and 3 18.8 16.7 14.0 12.6 33.9 30.7 15.1 20.9
Mods 1 and 4 15.9 14.3 10.0 7.8 23.4 23.5 11.4 15.6
Mods 2 and 3 12.8 19.5 15.5 8.2 24.8 25.4 14.2 17.4
Mods 2 and 4 11.0 17.9 14.0 6.8 21.3 22.1 12.6 15.4
Mods 3 and 4 11.9 14.1 12.3 10.2 32.5 23.5 12.1 17.6
Mods 1-3 19.0 21.7 15.0 4.2 27.4 29.0 14.4 18.6
Mods 1-2,4 14.3 19.3 13.2 3.1 17.8 21.6 12.2 14.7

Mods 1,3-4 17.3 14.1 10.3 8.3 22.7 25.6 11.8 16.0
Mods 2-4 11.0 17.9 14.0 6.7 21.7 22.0 12.6 15.4
Mods 1-4 14.5 19.2 13.0 3.1 19.1 21.7 12.1 14.8

Fig. 4 Enhanced REA RMS marker distance errors over 5 trials
for each segment for all locomotion tasks: walking, marching,
running, and bounding. Error bars indicate one standard devia-
tion away from the mean. For the marching motion, only four
useable trials were available. Leg errors include the pelvis,
thigh, shank, and foot. Units are in mm.
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enhanced REA. The optimized kinematics showed slightly more
rotation of the pelvis, back, and shoulders to reduce overall
marker errors (Fig. 3). Regardless of which model was used, the
enhanced REA algorithm resulted in lower marker errors for all
segments (Table 2), with the only exception being the trunk
marker error for the 29 DOF two back joint model.

Somewhat surprisingly, splitting the trunk into two segments
did not significantly improve marker tracking errors compared to
a single-segment trunk (Table 2). Adding a joint at the T8-T9
level may not have been the best way to test the benefits of a sec-
ond back joint in the model, as there is not much flexibility in the
rib cage. Alternatively, choosing the second back joint at the T12-
L1 level could potentially be more useful because the back has
more flexibility in the lumbar region. With a second back joint at
the T8-T9 level, marker tracking errors for all segments were
comparable between our three models, with a few exceptions. The
29 DOF two back joint model yielded the highest trunk marker
errors (even compared to the original REA model), while the 32
DOF two back joint model yielded the highest pelvis and lowest
arm marker errors. However, the free rotational motion of the
lower trunk segment in the 32 DOF model resulted in a non-
unique solution. Overall, the reduced complexity of the one back
joint model was sufficient for improving both foot marker tracking
and tracking of markers on other segments.

Our improvements to the original REA came at a significant
computational cost. The original REA formulation simultaneously
adapts only the initial positions and velocities of the 29 general-
ized coordinates (total design variables¼ 58). The enhanced REA
formulation has 866 design variables that also account for parame-
terization of joint kinematics, feedback gains, and joint and iner-
tial parameters. For the original REA, the time required to process
one walking trial using the 29 DOF one back joint model was
9 min. In contrast, for the 29 DOF one back joints, 29 DOF two
back joints, and 32 DOF models, the enhanced REA using all four
modifications required 1.9 hrs, 3.4 hrs, and 2.9 hrs, respectively, to
process the same walking trial. Not only were results for the one
back joint model sufficient in terms of accuracy, but the computa-
tion time was much lower compared to both of the two back joint
models.

Our analysis of each REA enhancement performed separately
and in combinations (Table 3) revealed that adjustment of the
tracked kinematic curves had the most impact on reducing foot
marker errors. Use of two modifications together led to improve-
ments compared to the original REA but did not achieve the
desired level of accuracy for the foot markers. Surprisingly, the
marker weight adjustments were involved in the lowest (with
tracked kinematic curve adjustments) and highest (with feedback
gain adjustments) foot marker errors for combinations of two
adjustments, which may suggest greater importance of the tracked
acceleration curve adjustments and lesser importance of the feed-
back gain adjustments. Use of groups of three modifications, spe-
cifically all but the feedback gain adjustments, resulted in the best
overall marker tracking errors. Feedback gain adjustments
appeared to affect the solution only at the level of numerical
noise. Therefore, the best approach appears to be a combination of
manual adjustments to marker weights, automatic adjustments to
tracked kinematic curves, and automatic adjustments to model pa-
rameter values if the goal is to reduce foot marker errors without
increasing marker errors for other segments.

This study was not without limitations. Our focus was on the
development of the enhanced REA approach and showing that it
works for other tasks while reducing RMS foot marker errors for
walking and eliminating pelvis residual forces and torques. There-
fore, we only tested the algorithm on one subject. While we have
not tested our approach on subjects with neurological or musculo-
skeletal impairments, our results provide no indication that similar
improvements would not be attained for a subject with impair-
ments or for a different healthy subject. In addition, our walking
model is based on principles of rigid multibody dynamics and did
not account for soft tissue deformations explicitly. However, such

deformations were accounted for implicitly by the use of best-fit
model parameter values.

With these three modifications, the enhanced REA may be use-
ful for gait optimizations that utilize deformable foot-ground con-
tact models, where foot position and orientation are important for
modeling foot–floor interaction. The hindfoot of each leg was
tracked to within 1 mm of the best-case errors, sufficient for incor-
porating a multi-segment deformable foot-ground contact model
into the full-body model. By allowing the optimizer to modify the
tracked joint acceleration curves while minimizing a clinically
useful cost function (e.g., minimize the peak knee adduction
moment), the enhanced REA may be able to predict new gait pat-
terns for investigating novel rehabilitation strategies. These find-
ings also demonstrate that greater back flexibility may not
improve marker tracking significantly in computational gait mod-
els, suggesting that a one back joint model is sufficient for simu-
lating gait patterns that do not involve large trunk motions.
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Nomenclature

DOF ¼ degrees of freedom
Mod ¼ modification
mm ¼ millimeters

N ¼ Newtons
Nm ¼ Newton-meters

REA ¼ residual elimination algorithm
RMS ¼ root-mean-square

1BJM ¼ one back joint model
2BJM-D ¼ two back joint model (dependent degrees of

freedom)
2BJM-I ¼ two back joint model (independent degrees of

freedom)
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