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Muscle Synergies May Improve
Optimization Prediction of Knee
Contact Forces During Walking

The ability to predict patient-specific joint contact and muscle forces accurately could
improve the treatment of walking-related disorders. Muscle synergy analysis, which
decomposes a large number of muscle electromyographic (EMG) signals into a small
number of synergy control signals, could reduce the dimensionality and thus redundancy
of the muscle and contact force prediction process. This study investigated whether use
of subject-specific synergy controls can improve optimization prediction of knee contact

forces during walking. To generate the predictions, we performed mixed dynamic mus-

cle force optimizations (i.e., inverse skeletal dynamics with forward muscle activation
and contraction dynamics) using data collected from a subject implanted with a force-
measuring knee replacement. Twelve optimization problems (three cases with four sub-
cases each) that minimized the sum of squares of muscle excitations were formulated to
investigate how synergy controls affect knee contact force predictions. The three cases
were: (1) Calibrate+Match where muscle model parameter values were calibrated
and experimental knee contact forces were simultaneously matched, (2) Precalibrate+
Predict where experimental knee contact forces were predicted using precalibrated mus-
cle model parameters values from the first case, and (3) Calibrate+ Predict where mus-
cle model parameter values were calibrated and experimental knee contact forces were
simultaneously predicted, all while matching inverse dynamic loads at the hip, knee,
and ankle. The four subcases used either 44 independent controls or five synergy con-
trols with and without EMG shape tracking. For the Calibrate4+Match case, all four sub-
cases closely reproduced the measured medial and lateral knee contact forces (R> >
0.94, root-mean-square (RMS) error < 66 N), indicating sufficient model fidelity for
contact force prediction. For the Precalibrate4Predict and Calibrate+Predict cases,
synergy controls yielded better contact force predictions (0.61 < R*> < 0.90, 83 N <
RMS error < 161 N) than did independent controls (-0.15 < R? < 0.79, 124 N < RMS
error < 343 N) for corresponding subcases. For independent controls, contact force
predictions improved when precalibrated model parameter values or EMG shape track-
ing was used. For synergy controls, contact force predictions were relatively insensitive
to how model parameter values were calibrated, while EMG shape tracking made lat-
eral (but not medial) contact force predictions worse. For the subject and optimization
cost function analyzed in this study, use of subject-specific synergy controls improved
the accuracy of knee contact force predictions, especially for lateral contact force when
EMG shape tracking was omitted, and reduced prediction sensitivity to uncertainties in
muscle model parameter values. [DOI: 10.1115/1.4026428]

Keywords: gait, biomechanics, electromyography, static optimization, instrumented
implant, in vivo knee loads, musculoskeletal model

Introduction

Knowledge of subject-specific joint contact and muscle forces
during activities of daily living could improve the treatment of
movement-related disorders such as osteoarthritis, stroke, cerebral
palsy, and Parkinson’s disease [1]. However, it is currently impossi-
ble to measure these quantities in vivo, and calculating them with
musculoskeletal computer models is hindered by the redundant na-
ture of human neural control (i.e., more muscles than degrees of
freedom in the skeleton). Walking is a particularly important activ-
ity of daily living to understand since loss of mobility is associated
with increased morbidity and decreased quality of life [2].

To address the muscle redundancy problem, numerous studies
have used optimization methods to estimate a unique set of
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muscle (and sometimes joint contact) forces during walking
[3-11]. The challenge for optimization methods is that the cost
function being minimized by the human body (if it exists) remains
unknown. Furthermore, this cost function is likely to be invalid
for individuals with movement disorders. Some studies have
attempted to address these issues by taking advantage of muscle
electromyographic (EMG) signals measured during gait [12—-15].
Rather than predicting muscle excitations based on a selected
optimization cost function, these studies controlled muscle excita-
tions in their models directly with processed experimental EMG
data after calibrating muscle model parameter values via an opti-
mization process. Controlling muscles with processed EMG data
reduces redundancy, and no assumptions are required regarding
the control strategy being used by the nervous system. However,
crosstalk and noise in EMG signals [16,17], along with uncertain-
ties in calibrated muscle model parameter values, pose challenges
for this approach. Furthermore, EMG data are difficult or impossi-
ble to collect from deep muscles, and specifying excitations for
muscles without EMG data remains a challenge.
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Other studies have used muscle synergy analysis to explore
how the human nervous system reduces control complexity during
walking [18-20]. The key concept behind muscle synergy analysis
is dimensionality reduction. The analysis assumes that processed
muscle EMG signals are not independent from one another but
can be factored into a smaller number of independent control sig-
nals called neural commands. The processed EMG signals can
then be closely reconstructed using a linear combination of the
calculated neural commands. For walking, only three to seven
neural commands are typically required to account for over 90%
of the variability in as many as 32 processed lower extremity
EMG signals [18-20]. To date, muscle synergy analysis has been
used primarily for analyzing experimental EMG data, with only a
few studies using it to inform muscle force optimizations
[8,10,21-23]. Use of experimentally determined neural commands
to drive simulated muscle excitations may reduce control redun-
dancy by limiting the excitations that can be constructed. Further-
more, it could minimize the effect of any EMG crosstalk that may
be present. While these potential benefits are being explored for
muscle force predictions, they have yet to be investigated for con-
tact force predictions in the knee during walking.

This study evaluated whether use of experimentally calculated
neural commands to control simulated muscle excitations
improves knee contact force predictions generated by a subject-
specific musculoskeletal model. The study was performed by
applying a mixed dynamic optimization technique (i.e., inverse
skeletal dynamics with forward muscle activation and contraction
dynamics) to walking data collected from a subject implanted
with a force-measuring knee replacement. Twelve optimization
problems were formulated to investigate how using independent
muscle excitations versus interdependent muscle excitations con-
structed from a small number of neural commands affects knee
contact force predictions, with secondary consideration of how
calibration of muscle model parameter values and tracking of ex-
perimental EMG shapes influence the predictions. In addition to
evaluating contact force predictions using the instrumented knee
data, we also evaluated muscle excitation predictions for problem
formulations that did not track experimental EMG data. Availabil-
ity of instrumented knee data provided a unique opportunity to
evaluate the tradeoffs of the different optimization approaches.

Methods

Experimental Data. Experimental data from the Third Grand
Challenge Competition to Predict in vivo Knee Loads [24] were
used for this study. The data were collected from a single subject
implanted with a force-measuring knee replacement (female, left
knee, age: 69 y, mass: 78 kg, height: 167 cm). Institutional review
board approval and subject informed consent were obtained prior
to testing. The subject performed overground walking trials at a
self-selected speed (1.3 m/s) while marker trajectory, ground reac-
tion force and moment, EMG, and knee implant load data were
collected simultaneously (for data collection details, please see
Ref. [24]). One representative normal walking cycle was selected
for analysis. For knee implant loads, three orthogonal forces and
moments were measured at the center of the tibial post and level
with the top surface of the tibial tray [25]. EMG data were col-
lected from 13 muscles including the biceps femoris long head
(BifemLH), semimembranosus (Semimem), medial gastrocne-
mius (MedGas), lateral gastrocnemius (LatGas), tensor fascia
latae (TFL), vastus lateralis (VasLat), rectus femoris (RF), sarto-
rius (Sart), gracilis (Grac), soleus (Sol), tibialis anterior (TA), per-
oneus longus (PerLong), and adductor magnus (AddMag). These
data were high-pass filtered (zero-lag fourth-order Butterworth at
30 Hz), full-wave rectified, and low-pass filtered (zero-lag fourth-
order Butterworth at 6Hz) to create experimental muscle
excitation profiles. Ground reaction and knee contact loads were
also filtered with a zero-lag fourth-order Butterworth filter with a
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cutoff frequency of 6 Hz for consistency with kinematic and EMG
data [26].

Muscle synergy analysis was performed on the 13 experimental
EMG profiles to calculate neural commands (i.e., a lower-
dimensional set of time-varying signals) and synergy vectors (i.e.,
the sets of weights that specify how each neural command
contributes to the excitation of each muscle) using nonnegative
matrix factorization (NMF) [27,28]. To achieve equal weighting
between muscles for the NMF analysis, we normalized each proc-
essed EMG signal to its maximum value over the selected gait
cycle, which resulted in the magnitude of all EMG signals ranging
from zero to one. The number of synergies was increased until the
variance accounted for (VAF) was at least 95% for each muscle
[18]. Five muscle synergies were found to be sufficient, and the
five resulting neural commands were used to define synergy con-
trols for all muscles (Fig. 1). Further details on our muscle syn-
ergy analysis method can be found in the supplemental material to
be linked here April 2014.

Musculoskeletal Model. We created a subject-specific muscu-
loskeletal model in OpenSim [29] by combining a subject-specific
inverse dynamic skeletal model with subject-specific implant-
bone geometric models. The subject-specific inverse dynamic
model was created from a full-body dynamic walking model
developed in Autolev (OnLine Dynamics, Sunnyvale, CA) and
the subject’s marker trajectory and ground reaction data [30,31].
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Fig. 1 Normalized neural command curves calculated from 13
processed experimental EMG signals. These five neural com-
mands were able to account for 95% of the variability in all ex-
perimental EMG curves and were used to construct 44
simulated muscle excitation signals for muscle force optimiza-
tions using synergy controls.
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The full-body model possessed 27 degrees of freedom (DOFs)
including six DOFs between the pelvis and ground, three DOFs
for the lower back, two DOFs for each shoulder, one DOF for
each elbow, three DOFs for each hip, one DOF for each knee, and
two DOFs for each ankle. Where possible, we defined locations of
joint centers and orientations of joint axes in the implanted left leg
to match anatomic measurements (e.g., distance between hip joint
centers in the pelvis) made using subject-specific bone geome-
tries. We calibrated the remaining joint parameter values along
with segment inertial parameter values to the subject’s movement
data (i.e., static trial, joint range of motion trials, and the selected
walking trial) via a previously published optimization process
[30,31]. The cost function minimized marker tracking errors
(inverse kinematics) while simultaneously minimizing residual
forces and torques acting on the pelvis (dynamic consistency). Af-
ter joint and inertial parameter values were calibrated in the full-
body Autolev model, we constructed an OpenSim inverse
dynamic model that replicated the pelvis and left leg of the cali-
brated Autolev model.

Subject-specific implant-bone geometric models were created
from computerized tomography (CT) scans of the subject’s pelvis
and left leg and from polygonal surface models of the subject’s
implant components. Cortical bone edges were segmented from
pre-surgery CT scan data spanning the knee, while cortical bone
and metallic implant edges were segmented from post-surgery CT
scan data spanning the pelvis to calcaneus. All segmentation was
performed using commercial image processing software (SliceO-
matic, Tomovision, Montreal, Canada). Polygonal surface geome-
try was constructed for each bone (pelvis, femur, patella, tibia,
fibula, talus, and calcaneus) from the segmented point clouds
using commercial reverse engineering software (Geomagic Stu-
dio, Raindrop Geomagic, Research Triangle Park, NC). The pre-
surgery surface models for the femur, tibia, and patella were
aligned to the corresponding post-surgery surface models, while
surface models of the implant components were aligned to their
post-surgery point clouds (femoral component and tibial tray) or
bone peg holes (patellar button). After trimming and merging, the
final implant-bone models consisted of the post-surgery bone
models replaced with the pre-surgery distal femur, proximal tibia,
and patella trimmed to accommodate the properly positioned
implant components.

The final subject-specific musculoskeletal model was con-
structed by incorporating the subject-specific implant-bone geo-
metric models into the subject-specific OpenSim inverse dynamic
model. Alignment of the implant-bone models with the OpenSim
kinematic model structure was achieved using corresponding joint
centers and anatomical landmarks. The one DOF knee joint in the
OpenSim model was redefined to permit six DOFs between the
femoral component and tibial tray and six DOFs between the fem-
oral component and patellar button. For the tibiofemoral joint, the
origin was defined as the origin of the tibial tray so that inverse
dynamic loads calculated by OpenSim would be consistent with
contact loads measured by the instrumented implant. Forty-four
lower extremity muscles were added to the model by scaling a
generic OpenSim model [32] and transferring the scaled muscle
attachment points and wrapping surfaces to the subject-specific
bones. Nominal muscle model parameter values (tendon slack
lengths, optimal fiber lengths, maximum isometric strengths, and
pennation angles) were also obtained from the generic model. Fur-
ther details on the model construction process can be found in the
supplemental material to be linked here April 2014.

Joint kinematics for the OpenSim musculoskeletal model were
calculated via a four-step process using a combination of marker
trajectory, instrumented knee implant, and single-plane fluoro-
scopic knee motion data. Each step determined one or more kine-
matic trajectories needed for the subsequent steps. The four steps
were: (1) initial inverse kinematic analysis to determine knee
flexion kinematics, (2) optimization analysis to determine
tibiofemoral kinematics, (3) optimization analysis to determine
patellofemoral kinematics, and (4) final inverse kinematic analysis
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to determine pelvis, hip, and ankle kinematics. The first step cal-
culated knee flexion kinematics using marker trajectory data for
the selected walking trial. This step performed an initial inverse
kinematic analysis in Matlab using the calibrated full-body Auto-
lev model with a one DOF knee joint. The second step calculated
more accurate tibiofemoral kinematics using knee flexion kine-
matics prescribed from the first step, instrumented implant data
from the selected walking trial, and fluoroscopic knee motion data
from treadmill gait collected from the same subject during a dif-
ferent test session. This step performed an optimization analysis
in Matlab using a six DOF elastic foundation contact model of the
subject’s femoral component and tibial insert. For each time
frame, the optimizer adjusted contact-sensitive DOFs (i.e.,
superior-inferior translation, varus-valgus rotation, and medial-
lateral translation [33]) so that calculated contact forces matched
measured tibial contact forces, while the remaining DOFs were
locked at values from inverse kinematics (flexion angle) and fluo-
roscopy (anterior-posterior translation and internal-external rota-
tion) [11,34]. The third step estimated patellofemoral kinematics
using tibiofemoral kinematics prescribed from the first two steps.
This step performed an optimization analysis in Matlab using a
six DOF elastic foundation contact model of the subject’s femoral
component and patellar button with patella. For each time frame,
the optimizer adjusted all six DOFs to balance calculated contact
forces, patellar ligament forces (modeled as three linear springs),
and initial estimates of quadriceps forces acting on the patella
[11]. The fourth step calculated pelvis, hip, and ankle kinematics
using marker trajectory data and knee kinematics prescribed from
the previous three steps. This step performed a final inverse kine-
matic analysis in OpenSim using the subject-specific pelvis and
left leg OpenSim model where the tibiofemoral and patellofe-
moral joints each possessed 6 DOFs.

Mixed Dynamic Optimization. Leg muscle and knee contact
forces were estimated using a mixed dynamic optimization
approach combining inverse skeletal dynamics with forward mus-
cle activation and contraction dynamics. Muscle forces were opti-
mized to balance the inverse dynamic loads at the hip (three
moments), knee (one or three loads), and ankle (two moments).
Inverse dynamic loads represent the net loads experienced by a
joint due to internal muscle, contact, and ligament forces. For the
knee flexion moment, if contact and ligament forces are assumed
to contribute minimally, this load can be balanced by muscle
forces alone. For the knee superior-inferior force and varus-valgus
moment, if measured tibiofemoral contact loads are applied to the
inverse dynamic model and ligament forces are assumed to con-
tribute minimally, these two additional inverse dynamic loads can
also be balanced by muscle forces alone. Thus, access to meas-
ured knee contact loads permitted two categories of optimization
problems: one that applied the measured contact loads to the
subject-specific OpenSim model and balanced three inverse
dynamic loads at the knee (used to verify that the model could
reproduce the experimental knee contact forces) and another that
predicted contact loads and balanced only one inverse dynamic
load at the knee. To calculate knee contact forces with the Open-
Sim model, we used a validated regression equation for the sub-
ject’s implant components that converted superior-inferior force
and varus-valgus moment from inverse dynamics (with muscle
forces applied) into medial and lateral contact forces [24].

During each optimization, muscle forces were calculated using
models of activation and contraction dynamics where calculated
muscle-tendon length and velocity trajectories provided boundary
conditions for muscle force generation. Simulated muscle excita-
tion signals were converted into simulated activation signals using
excitation scaling, a pure time delay, activation dynamics, and a
nonlinear function. Each excitation curve was scaled up or down
with an excitation scaling parameter to define excitation magni-
tude. A pure time delay of 20 ms was added to account for electri-
cal transmission time [35]. A linear (first-order ordinary
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Table 1 Summary of three optimization cases (with four sub-
cases each—see Table 2) that varied how muscle model param-
eter values were calibrated and whether experimental contact
forces were tracked. Calibrate indicates that muscle model pa-
rameter values were calibrated by the optimization, while Preca-
librate indicates that precalibrated muscle model parameter
values were taken from the corresponding Calibrate+Match
subcase. Match indicates that experimental contact forces were
matched by tracking three rather than one inverse dynamic
knee load, while Predict indicates that experimental knee con-
tact forces were predicted by tracking only one inverse dynamic
knee load. F/E indicates flexion/extension, S/l superior/inferior,
and V/V varus/valgus.

Table 2 Summary of four optimization subcases (performed
for each case - see Table 1) that varied how muscle excitations
were constructed and whether experimental EMG shapes were
tracked. Ind indicates that all 44 muscle excitation controls
were constructed independently, while Syn indicates that the
44 muscle excitation controls were constructed from linear
combinations of only 5 neural commands obtained from syn-
ergy analysis of the 13 processed experimental EMG signals.
EMG indicates that the shapes of processed experimental EMG
signals were tracked.

Optimization Subcase

Abbreviation Control Method EMG Tracking

Contact
Optimization Model Parameter Force Knee Loads
Case Abbreviation Calibration Tracking Tracked
Calibrate+Match Yes Yes F/E moment
S/I force
V/V moment
Precalibrate+Predict No No F/E moment
Calibrate+Predict Yes No F/E moment

differential equation (ODE) with activation and deactivation time
constants was used to model activation dynamics [36,37]. A two-
phase nonlinear model was included to reshape the final activation
curve based on methods reported for EMG-driven models [38].
Each resulting activation signal was converted into a tendon force
using a Hill-type muscle-tendon model with compliant tendon
[39]. A nonlinear first-order ODE with force-length and force-
velocity properties was used to model contraction dynamics. Acti-
vation and contraction dynamics were solved in a computationally
efficient manner by discretizing both ODEs using central differen-
ces and solving the resulting system of linear or nonlinear
equations over all time frames simultaneously.

Muscle excitations were modeled using either 44 independent
curves (henceforth called “independent controls”) or five neural
command curves (henceforth called “synergy controls”) that were
linearly combined to create 44 excitations. Each independent and
synergy control curve was parameterized using 25 B-spline nodes
treated as design variables. For the synergy controls, simulated
neural command curves were restricted to remain close to the ex-
perimental neural command curves, and the weights in the associ-
ated synergy vectors were also treated as design variables.

Optimization Problem Formulations. Twelve optimization
problems were formulated comprised of three cases with four sub-
cases each (Tables 1 and 2). The three cases (Table 1), which
evaluated how calibration of muscle model parameter values
influenced knee contact force predictions, were defined as follows:
(1) Calibrate muscle model parameter values to match experimen-
tal knee contact forces by design (Calibrate+Match), (2) predict
experimental knee contact forces using muscle model parameter
values precalibrated by the first case (Precalibrate+Predict), and
(3) calibrate muscle model parameter values while simultaneously
predicting knee contact forces (Calibrate+Predict). The Calibra-
te+Match case tracked three inverse dynamic knee loads since the
experimentally measured knee contact forces were applied to the
model. The goal of this case was to verify that the model pos-
sessed sufficient fidelity to reproduce all experimental data simul-
taneously. If the experimental knee contact forces could not be
reproduced when they were known, there would be little hope of
predicting them accurately when they were not known. The Pre-
calibrate+Predict and Calibrate+Predict cases tracked only one
inverse dynamic knee load since the experimental contact forces
were not applied to the model. The goal of these cases was to
evaluate how well the model could perform true predictions of
knee contact forces as a function of how muscle model parameter
values were calibrated. The four subcases (Table 2) evaluated
whether use of synergy controls in place of independent controls

021031-4 / Vol. 136, FEBRUARY 2014

IndEMG Independent Yes
SynEMG Synergy Yes
Ind Independent No
Syn Synergy No

improved prediction of knee contact forces and whether tracking
of experimental EMG shapes provided any additional benefit. The
four subcases performed for each case were: (1) independent con-
trols with EMG shape tracking (/IndEMG), (2) synergy controls
with EMG shape tracking (SynEMG), (3) independent controls
without EMG shape tracking (/nd), and (4) synergy controls with-
out EMG shape tracking (Syn). All optimization problems were
solved using Matlab’s unconstrained Isqnonlin nonlinear least
squares algorithm.

Design variables for the 12 optimizations consisted of a combi-
nation of muscle excitation, muscle-tendon model, and musculo-
skeletal model parameter values. For the Calibrate+Match and
Calibrate+Predict subcases, design variables were B-spline nodes
for independent and synergy control curves, weights in synergy
vectors (for synergy controls), excitation scaling parameters, elec-
trical time delays, activation and deactivation time constants, non-
linearization parameters, tendon slack lengths, optimal muscle
fiber lengths, tendon stiffness scaling parameters, muscle peak iso-
metric forces, B-spline nodes defining changes in nominal tibiofe-
moral anterior-posterior translation, and B-spline nodes defining
changes in nominal muscle moment arm curves. For the Precali-
brate+Predict subcases, only design variables related to inde-
pendent and synergy control curves, weights in synergy vectors,
excitation scaling parameters, and tibiofemoral anterior-posterior
translation were included, with all design variables related to
muscle-tendon model and musculoskeletal model parameter val-
ues taken from the corresponding Calibrate+Match subcase.

The cost function for each optimization minimized muscle exci-
tations and included penalty terms for tracking inverse dynamic
loads at the hip, knee, and ankle and bounding changes in model
parameter values within physiological ranges. For each type of
muscle-tendon model parameter (e.g., peak isometric force),
bounding was achieved by minimizing variations in individual pa-
rameter values away from corresponding literature values scaled
by a single common scale factor. All quantities in the cost func-
tion were squared by the optimization algorithm. For optimiza-
tions involving EMG shape tracking, terms were added to track
the shapes of processed experimental EMG curves. To facilitate
optimization convergence, we solved each optimization problem
using a modified univariate search method that varied groups of
similar design variables separately (e.g., all peak isometric force
values, then all tendon slack length values, etc.) before varying
groups of different design variables together (e.g., all muscle exci-
tation variables with all optimal fiber length values). To reduce
the likelihood of entrapment in a local minimum, we perturbed all
design variables by a small amount following each sequence of
optimizations and repeated the process until the final cost function
value changed by less than 5% between successive sequences.

Evaluation. The ability of each optimization to track or pre-
dict medial and lateral knee contact forces was evaluated using
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Fig. 2 Root-mean-square errors and R? values for medial, lateral, and total knee
contact force predictions from all optimizations. For the Calibrate+ Match cases,
muscle model parameter values were calibrated to match experimental knee con-
tact forces. For the Precalibrate+ Predict cases, experimental knee contact forces
were predicted using precalibrated muscle model parameter values from the first
case. For the Calibrate+ Predict cases, muscle model parameter values were cali-
brated while knee contact forces were predicted simultaneously. Subcases that
used synergy controls are indicated by the label Syn, while subcases that used in-
dependent controls are indicated by the label Ind. Subcases that tracked EMG
shapes are indicated by the additional label EMG.

medial, lateral, and total contact force R’ (coefficient of deter-
mination) values and RMS errors. Tracking of inverse dynamic
loads was evaluated using R® values for three hip, one or three
knee, and two ankle loads. The similarity of simulated muscle
excitation shapes to processed EMG shapes was evaluated
using %VAF and R? values for muscles with experimental
EMG data.

Results

Inverse Dynamic Loads. All 12 optimizations tracked the
inverse dynamic loads accurately with an average (standard devia-
tion) R? value of 0.97 (0.01), with R® values for individual
optimizations ranging between 0.94 and 0.99. Optimizations that
used synergy controls (Syn and SynEMG subcases; average R’
value =0.97 (0.01)) tracked inverse dynamics loads as well as
optimizations that used independent controls (/nd and IndEMG
subcases; average R? value = 0.96 (0.01)).

Contact Forces. Muscle model calibration method influenced
the accuracy of contact force predictions. For the Calibrate
+Match subcases, medial, lateral, and total contact force were
reproduced closely with average R? values of 0.96 (<0.01), 0.95
(0.01), and 0.99 (<0.01), respectively (Figs. 2 and 3). For the Pre-
calibrate+Predict subcases, medial, lateral, and total contact
forces were predicted with lower average R” values of 0.76 (0.08),
0.74 (0.08), and 0.78 (0.06), respectively. For the Calibrate
+Predict subcases, average R? values for medial, lateral, and total
contact force were the lowest at 0.53 (0.46), 0.60 (0.25), and 0.59
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(0.36), respectively. Contact force RMS errors for the three cases
followed similar trends to the R values (Figs. 2 and 3), with the low-
est average medial and lateral RMS error being for the Calibrate
+Match subcases (61 (5) N) and the highest average medial and lat-
eral RMS errors being for the Calibrate+Predict subcases (180 (78)
N). Sensitivity of predicted contact forces (Precalibrate+Predict
versus Calibrate+Predict subcases) to how muscle model parameter
values were calibrated was minimal for synergy controls (SynEMG
and Syn) and more pronounced independent controls (/ndEMG and
Ind), especially when EMG shape tracking was omitted.

For optimizations that predicted contact forces (Precalibrate
+Predict and Calibrate+Predict cases), synergy controls (Syn
and SynEMG subcases) improved contact force predictions (aver-
age medial, lateral, and total R? value =0.79 (0.09)) compared to
independent controls (Ind and IndEMG subcases; average R’
value =0.54 (0.31)). For the same cases, average medial and lat-
eral contact force RMS errors were smaller for synergy controls
(Syn and SynEMG subcases, 132 (27) N) than for independent
controls (Ind and IndEMG subcases, 190 (70) N). Differences in
contact force predictions between the two types of controls were
most evident in the contact force “trough” near the middle of
stance phase and throughout swing phase, where synergy controls
followed the experimental trends more closely.

Use of EMG shape tracking for optimizations that predicted
contact forces (Precalibrate+Predict and Calibrate+Predict
cases) reduced prediction accuracy for synergy controls (lateral
contact force only) but improved it for independent controls. Add-
ing EMG shape tracking (SynEMG) to synergy control subcases
(Syn) reduced average medial, lateral, and total R values from
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Fig. 3 Experimental and predicted medial, lateral, and total knee contact forces
for all optimizations. See caption of Fig. 2 for descriptions of cases and subcases.

0.84 (0.04) to 0.74 (0.09) and increased average medial and lat-
eral RMS errors from 117 (30) N to 147 (13) N. In contrast, add-
ing EMG shape tracking (IndEMG) to independent control
subcases (/nd) increased average medial, lateral, and total R’
values from 0.38 (0.36) to 0.71 (0.09) and decreased average
medial and lateral RMS errors from of 224 (86) N to 156 (31) N.
However, contact force predictions for synergy controls without
EMG shape tracking (Syn) were still more accurate than predic-
tions for independent controls with EMG shape tracking
(IndEMG).

Muscle Excitations. In contrast to contact force results, muscle
model calibration method did not have a large affect on the
agreement between predicted and experimental excitation shapes.
For each subcase, R? and %VAF values were roughly consistent
across the Calibrate4+-Match, Precalibrate+Predict, and Calibrate
+Predict cases (Fig. 4), with the best agreement between experimen-
tal EMG and simulated excitation shapes occurring for optimizations
that tracked EMG shapes.

For optimizations that predicted contact forces (Precalibrate
+Predict and Calibrate+Predict cases), the selected control
method influenced EMG prediction accuracy depending on the
muscle model calibration method used. Synergy controls achieved
higher R? and %V AF values than did independent controls for the
Precalibrate+Predict case, while the opposite trend was observed
for the Calibrate+Predict case. For these two cases combined,
optimizations that used synergy controls (Syn subcases) resulted
in an average R? value of 0.19 (0.47) and an average % VAF value
of 69 (16) compared to an average R? value of 0.17 (0.21) and an
average %VAF value of 66 (11) for optimizations that used
independent controls (/nd subcases).

Use of EMG shape tracking in optimizations that predicted con-
tact forces (Precalibrate+Predict and Calibrate+Predict cases)
significantly improved agreement with experimental EMG pat-
terns. For synergy controls (SynEMG) and independent controls
(IndEMG), the average R? value was 0.86 (0.06) and the average
%V AF value was 94 (2) between experimental and simulated ex-
citation shapes. When EMG shape tracking was not used (Szyn and
Ind subcases), the agreement was lower with an average R” value
of 0.18 (0.37) and average %V AF value of 68 (14).

Computation Time. Optimizations for all subcases converged
with the cost function changing by less than 5% between
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successive optimization sequences. For subcases where model
parameter values were calibrated (Calibrate4+Match and Calibrate
+Predict subcases), total optimization time averaged 54 (21) h on a
personal computer workstation with two quad-core Intel Xeon
3.2 GHz processors. For subcases where only muscle excitation pat-
terns were adjusted (Precalibrate+Predict subcases), average opti-
mization time was 34 (21) h. Optimization time was comparable
when using synergy controls (Syn and SynEMG subcases; 57 (17) h)
instead of independent controls (Ind and IndEMG subcases; 51
(25) h).

Discussion

This study investigated the ability of subject-specific muscle
synergy controls with and without EMG shape tracking to
improve optimization prediction of knee contact forces and mus-
cle excitations during walking. Optimization formulations that
tracked the experimental knee contact forces and EMG shapes
(Calibrate+Predict cases with IndEMG and %ynEMG subcases)
reproduced inverse dynamic loads closely (R~ > 0.95), medial
and lateral contact forces closely (R2 > 0.94), and muscle EMG
shapes reasonably well (average R> > 0.81), indicating that the
musculoskeletal model and optimization methods were theoreti-
cally capable of predicting the instrumented knee measurements.
Optimization formulations that predicted experimental knee con-
tact forces (Precalibrate+Predict and Calibrate+Predict cases)
produced the best predictions when subject-specific muscle syn-
ergy controls were used (R? between 0.61 and 0.90 compared to
R? between —0.15 and 0.81 for independent controls), especially
when EMG shape tracking was omitted. Furthermore, use of syn-
ergy controls reduced the sensitivity of predicted knee contact
forces to uncertainties in muscle model parameter values. How-
ever, use of synergy controls instead of independent controls did
not improve overall prediction of experimental muscle excita-
tions, which was unexpected. Thus, while synergy controls show
promise for improving prediction of knee contact forces, further
investigation is required to determine whether they can improve
prediction of muscles excitations as well.

While the best contact force estimates with synergy controls
occurred when EMG shape tracking was omitted, the best esti-
mates with independent controls occurred when it was included
(Figs. 2 and 3). The addition of EMG shape tracking degraded lat-
eral (but not medial) contact force predictions for synergy controls
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but produced large improvements for independent controls, indi-
cating that EMG shape tracking was critical for independent con-
trols. It is possible that for synergy controls, inclusion of EMG
shape tracking overconstrained the achievable simulated excita-
tion patterns, since experimental neural commands (obtained from
experimental EMG data) and experimental EMG signals were
being tracked simultaneously.

For synergy controls as well as independent controls, EMG
shape tracking underpredicted the second peak of knee contact
force during late stance phase (Fig. 3). This result was due to
reduced force in the four muscles that affected knee contact forces
the most (MedGas, LatGas, VasMed, and RF; Fig. 5). Force
reduction in these muscles may have been caused by incorrectly
calibrated muscle model parameter values, deficiencies in the
methods used to process and track EMG data, undetected prob-
lems with the EMG data for these muscles, or an inappropriate
optimization cost function. Preliminary optimizations revealed
that EMG shape tracking and net load tracking were inconsistent
with each other, particularly for MedGas and RF, which had the
largest muscle contributions to knee contact forces. To achieve
good EMG shape tracking without degrading net load tracking,
the optimizer tended to make the peak isometric force or muscle
excitation scaling parameter small for these two muscles so that
EMG shape could be matched without generating large muscle
forces that worsened net load tracking. This inconsistency
between EMG shape tracking and net load tracking was less pro-
nounced for these two muscles when precalibrated muscle model
parameter values were used, suggesting that uncertainties in pa-
rameter values were a contributing factor and that better calibra-
tion methods (e.g., involving use of dynamometer data) would be
beneficial. While EMG shape tracking degraded prediction accu-
racy for the second peak in contact force, this result may not occur
for other subjects, trials, or optimization cost functions, or for
optimizations that use a different approach for calibrating muscle
model parameter values. Thus, further testing should be per-
formed to evaluate how EMG shape tracking affects the accuracy
of knee contact force predictions when different muscle model
calibration methods are used.

Though synergy controls worked better than independent con-
trols for estimating knee contact forces accurately, both types of
controls produced contact forces with the correct general ampli-
tude and shape (Fig. 3). This outcome may be related to our use of
accurate subject-specific bone geometry constructed from CT
scan data, combined with our use of recently reported muscle ori-
gin, insertion, and wrapping surface data [32] that were scaled and
projected onto our subject-specific bone models. If this hypothesis
is correct, development of simple and inexpensive methods that
can improve the subject-specificity of the skeletal anatomy should
be explored.

The medial and lateral contact force predictions in our study
were as good as or better than predictions generated by other
recent studies that used the Knee Grand Challenge data sets
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Fig. 5 Sample muscle forces for Calibrate+ Predict case for
muscles (lateral gastrocnemius — LatGas, medial gastrocne-
mius — MedGas, rectus femoris — RF, and vastus medialis —
VasMed) with large contributions to knee contact forces. See
caption for Fig. 2 of descriptions of cases and subcases.

[40-44]. Our best knee contact force predictions were for the Cal-
ibrate+Predict case when synergy controls were used without
EMG shape tracking. For that problem formulation, RMS errors
were 130 and 83 N for medial and lateral contact force, respec-
tively, with R? values of 0.84 and 0.90. These results were espe-
cially good for lateral contact force, which historically has been
the most difficult to predict. For the four Knee Grand Challenge
competitions held thus far, the best blinded predictions had RMS
errors of 187 and 144 N for medial and lateral contact force,
respectively, with corresponding R® values of 0.82 and 0.67. For
unblinded predictions, the best results were RMS errors of 130
and 112 N with R? values of 0.95 and 0.78. Note, however, that
these competition results were not produced by the same model
on the same gait trial but represent the best results overall from
any model and gait trial.

Constructing all simulated muscle excitations from subject-
specific neural commands did not consistently improve or worsen
prediction of experimental EMG signals compared to using inde-
pendent controls (Fig. 4). Since the neural commands were calcu-
lated from experimental EMG data, we expected that synergy
controls would limit the achievable muscle excitation patterns and
make them more similar to the experimental EMG patterns. How-
ever, this outcome did not occur for all muscles. The fact that the
shapes of the medial and lateral contact force curves were pre-
dicted better using synergy controls (especially the “trough” near
25% of the gait cycle and throughout swing phase) suggests that
synergy controls produced more realistic net muscle loading on
the knee. However, individual muscle contributions to the net
muscle loads likely remained inaccurate as some EMG patterns
were not well predicted. Since optimizations that predicted excita-
tion patterns used muscle model parameter values calibrated with-
out the use of EMG data, it is possible that uncertainties in these
parameter values were a significant contributing factor to our poor
EMG predictions. Use of muscle model parameter values cali-
brated with the use of EMG data for optimizations that do not
track EMG data could potentially improve prediction of EMG
shapes.

Several recent studies have explored how muscle synergies can
be used to reduce control complexity in muscle force optimiza-
tions [8,10,21-23]. These studies evaluated their models by pre-
dicting joint moments and muscle forces, whereas our study
focused on predicting knee contact forces and muscle forces. Fur-
thermore, our study constructed simulated excitations for all
muscles (including those without EMG data) using linear combi-
nations of all available neural commands, whereas previous stud-
ies constructed muscle excitations using only a subset of available
neural commands (typically one and at most three), with some
muscle excitations defined using block or bimodal patterns.
Another important difference is that our study used subject- and
task-specific neural commands from a single gait trial while
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previous studies used synergy information that was averaged
across subjects and/or motion cycles.

Our study possessed several limitations that should be consid-
ered when assessing our findings. The first limitation was that we
simulated only a single subject performing a single gait trial. Due
to the large amount of computation time required to perform each
optimization, simulation of multiple gait trials was not feasible.
Use of instrumented knee data from additional subjects, gait trials,
or movement tasks may provide greater distinction between the
methods tested. A second limitation was that our optimization pre-
dictions are dependent on our selected cost function, which mini-
mized sum of squares of muscle excitations while tracking and
bounding various experimental quantities and model parameter
values. Future studies should investigate how different cost func-
tion formulations affect predicted leg muscle and knee contact
forces. A third limitation was the lack of a separate process specif-
ically for calibration of muscle model parameter values. We
attempted to predict knee contact forces using the simplest
approach possible, which involved calibrating the necessary mus-
cle model parameter values directly from the gait trial being ana-
lyzed. For EMG-driven models, it is common to perform an initial
calibration using data from dynamometer trials and different types
of movements [12], which likely improves calibration accuracy. A
fourth limitation was our adjustment of knee kinematics for con-
sistency with experimental knee contact force data. While these
kinematic adjustments improved the fidelity of our model, they
are not adjustments that can normally be made, since in vivo knee
contact force and fluoroscopy data are not usually available. If
these in vivo data had not been available, we could have used
tibiofemoral kinematics calculated by the Autolev model about its
optimal knee flexion-extension axis. How this change would have
affected our muscle and contact force predictions is unknown
since we chose to make use of the available fluoroscopic and con-
tact force data to evaluate optimization performance under best
possible conditions.

In conclusion, our optimization results suggest that subject-
specific muscle synergy controls may improve the accuracy of
knee contact force predictions while reducing prediction sensitiv-
ity to uncertainties in muscle model parameter values. Our results
also suggest that tracking experimental EMG data may improve
knee contact force predictions when not using synergy controls.
Future research that uses experimentally calculated neural com-
mands to construct simulated excitation patterns for all muscles,
including those without EMG data, should focus on the use of bet-
ter methods for calibrating muscle model parameter values.
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Nomenclature

AddMag = adductor magnus
BifemLH = long head biceps femoris
CT = computerized tomography
DOF = degree of freedom
EMG = electromyographic
Grac = gracilis
Ind = independent control of muscle excitations
LatGas = lateral gastrocnemius
MedGas = medial gastrocnemius
N = Newtons
PerLong = peroneus longus
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R? = coefficient of determination
RF = rectus femoris
RMS = root-mean-square
Sart = sartorius
Semimem = semimembranosus
Sol = soleus
Syn = synergy control of muscle excitations
TA = tibialis anterior
TFL = tensor fascia lata
VAF = variance accounted for; % VAF indicates VAF multi-
plied by 100
VasLat = vastus lateralis
VasMed = vastus medialis

References

[1] Erdemir, A., McLean, S., Herzog, W., and van den Bogert, A. J., 2007, “Model-
Based Estimation of Muscle Forces Exerted During Movements,” Clin.
Biomech. (Bristol Avon), 22(2), pp. 131-154.

[2] Praemer, A., Furner, S., and Rice, D. P., 1999, Musculoskeletal Conditions in
the United States, American Academy of Orthopaedic Surgeons, Rosemont, IL.

[3] Piazza, S. J., 2006, “Muscle-Driven Forward Dynamic Simulations for the
Study of Normal and Pathological Gait,” J. Neuroeng. Rehab., 3, p. 5.

[4] Thelen, D. G., and Anderson, F. C., 2006, “Using Computed Muscle Control to
Generate Forward Dynamic Simulations of Human Walking From Experimen-
tal Data,” J. Biomech., 39(6), pp. 1107-1115.

[5] Duda, G. N., Schneider, E., and Chao, E. Y., 1997, “Internal Forces and
Moments in the Femur During Walking,” J. Biomech., 30(9), pp. 933-941.

[6] Glitsch, U., and Baumann, W., 1997, “The Three-Dimensional Determination
of Internal Loads in the Lower Extremity,” J. Biomech., 30(11-12), pp.
1123-1131.

[7] Liu, M. Q., Anderson, F. C., Schwartz, M. H., and Delp, S. L., 2008, “Muscle
Contributions to Support and Progression Over a Range of Walking Speeds,” J.
Biomech., 41(15), pp. 3243-3252.

[8] Allen, J. L., and Neptune, R. R., 2012, “Three-Dimensional Modular Control of
Human Walking,” J. Biomech., 45(12), pp. 2157-2163.

[9] Kim, H. J., Fernandez, J. W., Akbarshahi, M., Walter, J. P., Fregly, B. J., and
Pandy, M. G., 2009, “Evaluation of Predicted Knee-Joint Muscle Forces During
Gait Using an Instrumented Knee Implant,” J. Orthop. Res., 27(10), pp.
1326-1331.

[10] Sartori, M., Gizzi, L., Lloyd, D. G., and Farina, D., 2013, “A Musculoskeletal
Model of Human Locomotion Driven by a Low Dimensional Set of Impulsive
Excitation Primitives,” Front. Comput. Neurosci., 7, p. 79.

[11] Lin, Y. C., Walter, J. P., Banks, S. A., Pandy, M. G., and Fregly, B. J., 2010,
“Simultaneous Prediction of Muscle and Contact Forces in the Knee During
Gait,” J. Biomech., 43(5), pp. 945-952.

[12] Buchanan, T. S., Lloyd, D. G., Manal, K., and Besier, T. F., 2004,
“Neuromusculoskeletal Modeling: Estimation of Muscle Forces and Joint
Moments and Movements From Measurements of Neural Command,” J. Appl.
Biomech., 20(4), pp. 367-395.

[13] Sartori, M., Reggiani, M., Farina, D., and Lloyd, D. G., 2012, “EMG-Driven
Forward-Dynamic Estimation of Muscle Force and Joint Moment About Multi-
ple Degrees of Freedom in the Human Lower Extremity,” PloS One, 7(12),
p. €52618.

[14] Jonkers, 1., Spaepen, A., Papaioannou, G., and Stewart, C., 2002, “An EMG-
Based, Muscle Driven Forward Simulation of Single Support Phase of Gait,” J.
Biomech., 35(5), pp. 609-619.

[15] White, S. C., and Winter, D. A., 1992, “Predicting Muscle Forces in Gait From
EMG Signals and Musculotendon Kinematics,” J. Electromyogr. Kinesiol.,
2(4), pp. 217-231.

[16] Disselhorst-Klug, C., Schmitz-Rode, T., and Rau, G., 2009, “Surface Electro-
myography and Muscle Force: Limits in SEMG-Force Relationship and New
Approaches for Applications,” Clin. Biomech. Bristol Avon, 24(3), pp.
225-235.

[17] De Luca, C. J., 1997, “The Use of Surface Electromyography in Bio-
mechanics,” J. Appl. Biomech., 13, pp. 135-163.

[18] Cappellini, G., Ivanenko, Y. P., Poppele, R. E., and Lacquaniti F., 2006, “Motor
Patterns in Human Walking and Running,” J. Neurophysiol., 95(6), pp.
3426-3437.

[19] Ivanenko, Y. P., Poppele, R. E., and Lacquaniti, F., 2004, “Five Basic Muscle
Activation Patterns account for Muscle Activity During Human Locomotion,”
J. Physiol., 556(Pt. 1), pp. 267-282.

[20] Clark, D. J., Ting, L. H., Zajac, F. E., Neptune, R. R., and Kautz, S. A., 2010,
“Merging of Healthy Motor Modules Predicts Reduced Locomotor Perform-
ance and Muscle Coordination Complexity Post-Stroke,” J. Neurophysiol.,
103(2), pp. 844-857.

[21] Neptune, R. R., Clark, D. J., and Kautz, S. A., 2009, “Modular Control of
Human Walking: A Simulation Study,” J. Biomech., 42(9), pp. 1282-1287.

[22] McGowan, C. P., Neptune, R. R., Clark, D. J., and Kautz, S. A., 2010, “Modular
Control of Human Walking: Adaptations to Altered Mechanical Demands,” J.
Biomech., 43(3), pp. 412-419.

Transactions of the ASME

Downloaded From: http://biomechanical .asmedigitalcollection.asme.org/ on 03/16/2014 Terms of Use: http://asme.org/terms


http://dx.doi.org/10.1016/j.clinbiomech.2006.09.005
http://dx.doi.org/10.1016/j.clinbiomech.2006.09.005
http://dx.doi.org/10.1186/1743-0003-3-5
http://dx.doi.org/10.1016/j.jbiomech.2005.02.010
http://dx.doi.org/10.1016/S0021-9290(97)00057-2
http://dx.doi.org/10.1016/S0021-9290(97)00089-4
http://dx.doi.org/10.1016/j.jbiomech.2008.07.031
http://dx.doi.org/10.1016/j.jbiomech.2008.07.031
http://dx.doi.org/10.1016/j.jbiomech.2012.05.037
http://dx.doi.org/10.1002/jor.20876
http://dx.doi.org/10.3389/fncom.2013.00079
http://dx.doi.org/10.1016/j.jbiomech.2009.10.048
http://dx.doi.org/10.1371/journal.pone.0052618
http://dx.doi.org/10.1016/S0021-9290(01)00240-8
http://dx.doi.org/10.1016/S0021-9290(01)00240-8
http://dx.doi.org/10.1016/1050-6411(92)90025-E
http://dx.doi.org/10.1016/j.clinbiomech.2008.08.003
http://dx.doi.org/10.1152/jn.00081.2006
http://dx.doi.org/10.1113/jphysiol.2003.057174
http://dx.doi.org/10.1152/jn.00825.2009
http://dx.doi.org/10.1016/j.jbiomech.2009.03.009
http://dx.doi.org/10.1016/j.jbiomech.2009.10.009
http://dx.doi.org/10.1016/j.jbiomech.2009.10.009

[23] Allen, J. L., Kautz, S. A., and Neptune, R. R., 2013, “The Influence of Merged
Muscle Excitation Modules on Post-Stroke Hemiparetic Walking Perform-
ance,” Clin. Biomech. (Bristol Avon), 28(6), pp. 697-704.

[24] Fregly, B. J., Besier, T. F., Lloyd, D. G., Delp, S. L., Banks, S. A., Pandy, M.
G., and D’Lima, D. D., 2012, “Grand Challenge Competition to Predict In Vivo
Knee Loads,” J. Orthop. Res., 30(4), pp. 503-513.

[25] Kirking, B., Krevolin, J., Townsend, C., Colwell, Jr. C. W., and D’Lima, D. D.,
2006, “A Multiaxial Force-Sensing Implantable Tibial Prosthesis,” J. Biomech.,
39(9), pp. 1744-1751.

[26] Kristianslund, E., Krosshaug, T., and van den Bogert, A. J., 2012, “Effect of
Low Pass Filtering on Joint Moments From Inverse Dynamics: Implications for
Injury Prevention,” J. Biomech., 45(4), pp. 666—671.

[27] Lee, D. D., and Seung, H. S., 1999, “Learning the Parts of Objects by Non-
Negative Matrix Factorization,” Nature, 401(6755), pp. 788-791.

[28] Ting, L. H., and Chvatal, S. A., 2010, “Decomposing Muscle Activity in Motor
Tasks,” Motor Control Theories, Experiments and Applications. Oxf. Univ.
Press, New York, pp. 102v-138.

[29] Delp, S. L., Anderson, F. C., Arnold, A. S., Loan, P., Habib, A., John, C. T.,
Guendelman, E., and Thelen, D. G., 2007, “OpenSim: Open-Source Software to
Create and Analyze Dynamic Simulations of Movement,” IEEE Trans. Biomed.
Eng., 54(11), pp. 1940-1950.

[30] Reinbolt, J. A., Schutte, J. F., Fregly, B. J., Koh, B. I, Haftka, R. T., George, A.
D., and Mitchell, K. H., 2005, “Determination of Patient-Specific Multi-Joint
kinematic Models Through Two-Level Optimization,” J. Biomech., 38(3), pp.
621-626.

[31] Fregly, B. J., Reinbolt, J. A., Rooney, K. L., Mitchell, K. H., and Chmielewski,
T. L., 2007, “Design of Patient-Specific Gait Modifications for Knee osteoar-
thritis rehabilitation,” IEEE Trans. Biomed. Eng., 54(9), pp. 1687-1695.

[32] Arnold, E. M., Ward, S. R., Lieber, R. L., and Delp, S. L., 2010, “A Model of
the Lower Limb for Analysis of Human Movement,” Ann. Biomed. Eng.,
38(2), pp. 269-279.

[33] Fregly, B. J., Banks, S. A., D’Lima, D. D., and Colwell, C. W. Jr., 2008,
“Sensitivity of Knee Replacement Contact Calculations to Kinematic Measure-
ment Errors,” J. Orthop. Res., 26(9), pp. 1173-1179.

Journal of Biomechanical Engineering

[34] Zhao, D., Banks, S. A., D’Lima, D. D., Colwell, C. W. Jr., and Fregly, B. J.,
2007, “in vivo Medial and Lateral Tibial Loads During Dynamic and High
Flexion Activities,” J. Orthop. Res., 25(5), pp. 593-602.

[35] Corcos, D. M., Gottlieb, G. L., Latash, M. L., Almeida, G. L., and Agarwal, G.
C., 1992, “Electromechanical Delay: An Experimental Artifact,” J. Electro-
myogr. Kinesiol., 2(2), pp. 59-68.

[36] He, J., Levine, W. S., and Loeb, G. E., 1991, “Feedback Gains for Correcting
Small Perturbations to Standing Posture,” Autom. Control IEEE Trans., 36(3),
pp. 322-332.

[37] Van den Bogert, A. J., Blana, D., and Heinrich, D., 2011, “Implicit Methods for
Efficient Musculoskeletal Simulation and Optimal Control,” Procedia IUTAM,
2, pp. 297-316.

[38] Manal, K., and Buchanan, T. S., 2003, “A One-Parameter neural Activation to
Muscle Activation Model: Estimating Isometric Joint Moments From Electro-
myograms,” J. Biomech., 36(8), pp. 1197-1202.

[39] Zajac, F. E., 1989, “Muscle and Tendon: Properties, Models, Scaling, and
Application to Biomechanics and Motor Control,” Crit. Rev. Biomed. Eng.,
17(4), pp. 359-411.

[40] Kinney, A. L., Besier, T. F., D’Lima, D. D., and Fregly, B. J., 2013, “Update on
Grand Challenge Competition to Predict In Vivo Knee Loads,” ASME J. Bio-
mech. Eng., 135(2), p. 021012.

[41] Kim, Y.-H., Park, W.-M., and Phuong, B. T. T., 2010, “Effect of Joint Center
Location on In-Vivo Joint Contact Forces During Walking,” Proceedings of the
ASME 2010 Summer Bioengineering Conference, Naples, FL, Paper No.
SBC2010-19353.

[42] Hast, M. W., and Piazza, S. J., 2013, “Dual-Joint Modeling for Estimation of
Total Knee Replacement Contact Forces During Locomotion,” ASME J. Bio-
mech. Eng., 135(2), p. 021013.

[43] Manal, K., and Buchanan, T. S., 2013, “An Electromyogram-Driven Musculo-
skeletal Model of the Knee to Predict In Vivo Joint Contact Forces During Nor-
mal and Novel Gait Patterns,” ASME J. Biomech. Eng., 135(2), p. 021014.

[44] Lundberg, H. J., Knowlton, C., and Wimmer, M. A., 2013, “Fine Tuning Total
Knee Replacement Contact Force Prediction Algorithms Using Blinded Model
Validation,” ASME J. Biomech. Eng., 135(2), p. 021015.

FEBRUARY 2014, Vol. 136 / 021031-9

Downloaded From: http://biomechanical .asmedigitalcollection.asme.org/ on 03/16/2014 Terms of Use: http://asme.org/terms


http://dx.doi.org/10.1016/j.clinbiomech.2013.06.003
http://dx.doi.org/10.1002/jor.22023
http://dx.doi.org/10.1016/j.jbiomech.2005.05.023
http://dx.doi.org/10.1016/j.jbiomech.2011.12.011
http://dx.doi.org/10.1038/44565
http://dx.doi.org/10.1109/TBME.2007.901024
http://dx.doi.org/10.1109/TBME.2007.901024
http://dx.doi.org/10.1016/j.jbiomech.2004.03.031
http://dx.doi.org/10.1109/TBME.2007.891934
http://dx.doi.org/10.1007/s10439-009-9852-5
http://dx.doi.org/10.1002/jor.20548
http://dx.doi.org/10.1002/jor.20362
http://dx.doi.org/10.1016/1050-6411(92)90017-D
http://dx.doi.org/10.1016/1050-6411(92)90017-D
http://dx.doi.org/10.1109/9.73565
http://dx.doi.org/10.1016/j.piutam.2011.04.027
http://dx.doi.org/10.1016/S0021-9290(03)00152-0
http://dx.doi.org/10.1115/1.4023255
http://dx.doi.org/10.1115/1.4023255
http://dx.doi.org/10.1115/1.4023320
http://dx.doi.org/10.1115/1.4023320
http://dx.doi.org/10.1115/1.4023457
http://dx.doi.org/10.1115/1.4023388

	cor1
	l
	F1
	T1
	T2
	F2
	F3
	F4
	F5
	B1
	B2
	B3
	B4
	B5
	B6
	B7
	B8
	B9
	B10
	B11
	B12
	B13
	B14
	B15
	B16
	B17
	B18
	B19
	B20
	B21
	B22
	B23
	B24
	B25
	B26
	B27
	B28
	B29
	B30
	B31
	B32
	B33
	B34
	B35
	B36
	B37
	B38
	B39
	B40
	B41
	B42
	B43
	B44

