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Two-Dimensional Surrogate
Contact Modeling for
Computationally Efficient
Dynamic Simulation of Total Knee
Replacements
Computational speed is a major limiting factor for performing design sensitivity and
optimization studies of total knee replacements. Much of this limitation arises from ex-
tensive geometry calculations required by contact analyses. This study presents a novel
surrogate contact modeling approach to address this limitation. The approach involves
fitting contact forces from a computationally expensive contact model (e.g., a finite ele-
ment model) as a function of the relative pose between the contacting bodies. Because
contact forces are much more sensitive to displacements in some directions than others,
standard surrogate sampling and modeling techniques do not work well, necessitating the
development of special techniques for contact problems. We present a computational
evaluation and practical application of the approach using dynamic wear simulation of a
total knee replacement constrained to planar motion in a Stanmore machine. The sample
points needed for surrogate model fitting were generated by an elastic foundation (EF)
contact model. For the computational evaluation, we performed nine different dynamic
wear simulations with both the surrogate contact model and the EF contact model. In all
cases, the surrogate contact model accurately reproduced the contact force, motion, and
wear volume results from the EF model, with computation time being reduced from
13 min to 13 s. For the practical application, we performed a series of Monte Carlo
analyses to determine the sensitivity of predicted wear volume to Stanmore machine setup
issues. Wear volume was highly sensitive to small variations in motion and load inputs,
especially femoral flexion angle, but not to small variations in component placements.
Computational speed was reduced from an estimated 230 h to 4 h per analysis. Surro-
gate contact modeling can significantly improve the computational speed of dynamic
contact and wear simulations of total knee replacements and is appropriate for use in
design sensitivity and optimization studies. �DOI: 10.1115/1.3005152�
ntroduction
For more than three decades, total knee replacement �TKR�

urgery has been performed on patients with severe osteoarthritis.
hough modern TKR surgery has a high success rate, some pa-

ients still experience substantial functional impairment postsur-
ery compared to healthy individuals �1�. Furthermore, patients
oday desire more than just pain relief, seeking a high level and
road variety of daily activities following TKR surgery �e.g., ten-
is, hiking, gardening, and even jogging� �2,3�. Thus, maximiza-
ion of durability and minimization of functional limitations have
ecome two primary design goals.

One way to pursue these goals is through the development of
omputational technology that permits sensitivity and optimiza-
ion studies of new TKR designs. A recent step in this direction
as been the development of computational models of knee wear
imulator machines �4–8�. Such models permit dynamic contact
nd wear simulations of knee implant designs to be performed in
time- and cost-efficient manner, with model predictions being

alidated against experimental motion and wear measurements
4,6,8,9�. Though finite element models can be used to perform
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contact calculations for these simulations, recent work has shown
that elastic foundation contact models produce similar contact
forces and pressures in a fraction of the CPU time �10�. Even so,
CPU times on the order of 5–10 min for a one-cycle dynamic
contact simulation can still be prohibitive for design sensitivity
and optimization studies requiring thousands of simulations.

Computational limitations in other engineering disciplines have
been overcome through the use of surrogate modeling approaches.
Surrogate modeling �also known as “metamodeling” or “response
surface approximation”� involves replacing a computationally
costly model with a computationally cheap model constructed us-
ing data points sampled from the original model. Once the surro-
gate model is constructed, it is used in place of the original com-
putationally costly model when subsequent engineering analyses
are performed. A variety of surrogate model fitting methods have
been proposed, including polynomial response surfaces �11–13�,
Kriging �14,15�, radial basis functions �16,17�, splines �18�, and
support vector machines �19,20�. While surrogate models have
been utilized successfully for a variety of engineering applications
�21–26�, only a few studies have used surrogate models to fit
input-output relationships from a computational contact model
�27–29�. Furthermore, none of these studies has proposed a sur-
rogate modeling technique to improve the computational effi-
ciency of dynamic contact simulations.

Unlike traditional engineering applications, joint contact analy-

ses pose unique challenges to existing surrogate modeling ap-
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roaches. Sampling data points within a hypercube defined by the
pper and lower bounds of the relative pose parameters will result
n few physically realistic data points for surrogate model cre-
tion. Most sample points will be either out of contact �i.e., zero
ontact force� or in excessive penetration �i.e., unrealistically high
ontact force� since contact forces are highly sensitive to the small
isplacements in the contact normal direction. Consequently, tra-
itional surrogate-based modeling approaches fail to provide the
ccuracy needed to perform dynamic simulations. A special
urrogate-based modeling approach adapted to the specific needs
f joint contact analyses is therefore required.

This study proposes a novel surrogate contact modeling ap-
roach for performing computationally efficient dynamic contact
nd wear simulations of total knee replacements. The approach
ddresses the unique challenges involved in applying surrogate
odeling techniques to joint contact problems. The primary ob-

ectives of the study are twofold. The first is to evaluate the com-
utational speed and accuracy of the proposed surrogate contact
odeling approach by comparing its results with those generated

y an elastic foundation contact model. Sample points for the
urrogate contact model are generated by the same elastic foun-
ation contact model used in the comparative dynamic wear simu-
ations. The second objective is to demonstrate the practical ap-
licability of the proposed approach by analyzing the sensitivity
f knee replacement wear predictions to realistic variations in in-
ut motions and loads and component placements. A Monte Carlo
pproach requiring thousands of dynamic wear simulations is used
o perform the sensitivity study. Both objectives are pursued using
dynamic contact model of a total knee replacement constrained

o planar motion in a Stanmore machine, and both demonstrate the
ignificant computational benefits that surrogate contact modeling
an provide for the analysis of TKR designs.

ethods

Surrogate Contact Model Development. We have developed
novel surrogate modeling approach to replace computationally

ostly contact calculations in dynamic simulations of total knee
eplacements. To develop the approach, we utilized a three-
imensional �3D� elastic foundation contact model �30–34� of a
ruciate-retaining commercial knee implant �Osteonics 7000,
tryker Howmedica Osteonics, Inc., Allendale, NJ� constrained to
agittal plane motion in a Stanmore simulator machine �35�. The
odel possessed three degrees of freedom �DOFs� relative to

round: tibial anterior-posterior translation, femoral superior-
nferior translation, and femoral flexion-extension. Similar to a
tanmore machine, femoral flexion-extension rotation was pre-
cribed while the remaining two DOFs were loaded using ISO
tandard input curves �36�. A pair of parallel spring bumper loads
as also applied to the tibia in the anterior-posterior direction to

pproximate the effect of ligament forces �35�. The EF contact
odel was treated as an applied load on the femoral component

nd tibial insert and used linear elastic material properties �4�. The
ynamic equations for the model were derived via Kane’s method
sing AUTOLEV symbolic manipulation software �OnLine Dynam-
cs, Sunnyvale, CA�. The equations were incorporated into a MAT-

AB program �The Mathworks, Natick, MA� that was used to per-
orm forward dynamic simulations with the stiff solver ode15s.

To develop a surrogate contact model to replace the EF contact
odel in the larger dynamic model described above, we followed
four-step process: �1� design of experiments �DOE�, �2� compu-

ational experiments, �3� surrogate model selection, and �4� surro-
ate model implementation �Fig. 1�. The first step, DOE, is a
tatistical method for determining at which locations in design
pace computational experiments should be performed with the
omputationally costly model to sample the outputs of interest
Fig. 1�a��. For our sagittal plane knee implant model, locations in
esign space �or “sample points”� were defined by the following
hree relative pose parameters: tibial anterior-posterior �AP� trans-

ation X, femoral superior-inferior �SI� translation Y, and femoral

41010-2 / Vol. 131, APRIL 2009
flexion-extension rotation �. The associated outputs of interest
calculated by the EF contact model were the AP contact force Fx
and the SI contact force Fy. Calculated contact torque was not of
interest since � was prescribed. To minimize the total number of
sample points while maximizing the quality of the resulting sur-
rogate model fit, we chose a Hammersley quasirandom �HQ� sam-
pling method �37�. This method uses an optimal design scheme
for placing sample points within a multidimensional hypercube
and provides better uniformity properties than do other sampling
techniques �38,39�.

The second step, computational experiments, involved perform-
ing simulations with the original contact model at the sample
points defined in the first step. Because contact forces are highly
sensitive to some pose parameters but not others, we made one
modification to the computational experiments performed at the
HQ sample points �Fig. 1�b��. A traditional HQ sampling method
would sample values of the three inputs X, Y, and � within their
specified bounds and use the EF contact model to calculate the
two outputs Fx and Fy at each sample point. However, since SI
contact force Fy is highly sensitive to small variations in SI trans-
lation Y �29,40�, this approach produced a large number of sample
points that were either out of contact or deeply penetrating. Inclu-
sion of these unrealistic points in the surrogate model fitting pro-
cess reduced the accuracy of the resulting surrogate contact
model. To resolve this issue, we inverted the HQ sampling method
for superior-inferior translation by sampling forces in the sensitive
direction �i.e., Fy� and displacements in the insensitive directions
�i.e., X and ��. Specifically, we used the HQ method to sample 300
pairs of X and � values. For each of these pairs, we generated five
sample points by performing five static analyses with the EF con-
tact model using Fy values ranging from 600 N to 2400 N �ap-
proximately three times body weight� in 600 N increments plus a
10 N value for determining contact initiation. The outputs of each
static analysis were Fx and Y. Evaluating 1500 sample points �X,
Fy, and �� using static analyses required approximately 3 h of
CPU time on a 3.4 GHz Pentium IV PC.

The third step, surrogate model selection, involved determining
the most appropriate type of surrogate model for fitting the input-
output relationships defined by the computational experiments in
the second step. Based on its ability to interpolate multidimen-
sional nonuniformly spaced sample points, Kriging �15,41� was
selected as the surrogate modeling method to fit the input-output
relationships defined by the 1500 sample points. Originally devel-
oped for geostatistics and spatial statistics, Kriging has been
widely applied in many different fields �28,42�. In mathematical
terms, Kriging utilizes a combination of a polynomial trend model
and a systematic departure model as follows:

y�x� = f�x� + z�x� �1�

where x is a vector of input variables, y�x� is the output to be
fitted, f�x� is a polynomial trend model, and z�x� is a systematic
departure model whose correlation structure is a function of the
distances between sample points. The f�x� term approximates the
design space globally while the z�x� term interpolates local devia-
tions from f�x�. The necessary parameters for z�x� were obtained
through maximum likelihood estimation �15�. The MATLAB tool-
box DACE �43� was used to construct all necessary Kriging mod-
els using a cubic polynomial trend function and a cubic spline
correlation function based on preliminary tests.

The fourth step, surrogate model implementation, required the
development of a special model inversion process to accommo-
date our modified HQ sampling approach �Fig. 1�c��. During a
dynamic simulation, the EF contact model requires X, Y, and � as
inputs and provides Fx and Fy as outputs, whereas the surrogate
contact model requires X, Fy, and � as inputs and predicts Fx and
Y as outputs. To address this inconsistency, we fitted Fy as a
function of Y using the general form of a Hertzian contact model

�44�
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F̂y = ky�X,���Y10 N�X,�� − Y�ny�X,�� �2�

here F̂y is the predicted SI contact force, ky is the contact stiff-
ess, Y10 N is the SI translation at contact initiation, and ny is the
ontact exponent. Use of Eq. �2� to calculate F̂y required fitting ky,
10 N, and ny as a function of X and �. Each of the 300 �X ,��
ample pairs had five sampled values of Fy �i.e., 10 N, 600 N,
200 N, 1800 N, and 2400 N� and five associated output values
f Y. Thus, Y10 N was already known for each �X ,�� sample pair.
o find ky and ny for each �X ,�� sample pair, we linearized Eq. �2�
y taking log10 of both sides and solved for log10�ky� �and hence

y� and ny using linear least squares �five equations in two un-
nowns�. This process yielded one value of ky, Y10 N, and ny for
ach �X ,�� sample pair.

To calculate Fx, we used the observation that Fx is close to a
onstant fraction of Fy at each �X ,�� sample pair as follows:

F̂x = ratio�X,��F̂y �3�

here F̂x is the predicted AP contact force, “ratio” is the aver-
ge of the five �Fx ,Fy� quotients obtained for each sample pair,
nd F̂y is the SI contact force predicted by Eq. �2�. Thus, the final
urrogate contact model utilized four separate Kriging models to
t ky, Y10 N, ny, and ratio as a function of X and � �Fig. 1�d��,
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ournal of Biomechanical Engineering
from Eqs. �2� and �3� at any point during a dynamic simulation
�Fig. 1�e��.

Surrogate Contact Model Evaluation. To evaluate the com-
putational speed and accuracy of our surrogate contact modeling
approach, we performed nine dynamic wear simulations with both
the surrogate contact model and the EF contact model used to
generate it. Each wear simulation utilized different nominal com-
ponent placements that were variations away from the original
placements �Fig. 2�a��. The specific variations simulated were all
possible combinations of three SI locations of the femoral flexion
axis �original�10 mm� and three AP slopes of the tibial insert
�original�10 deg�. To cover all possible dynamic simulation
paths, we specified the ranges of the 300 HQ sampling points
using the limits of motion obtained from dynamic simulations
performed with the EF contact model when the SI location of the
femoral flexion axis and the AP slope of the tibial insert were set
to their extreme values. We quantified differences between the sets
of results by calculating root mean square errors �RMSEs� in pre-
dicted contact forces, component translations, and wear volumes.

Generation of wear volume predictions with the surrogate con-
tact model required the development of a separate surrogate mod-
eling approach based on prediction of medial and lateral center of
pressure �CoP� locations. This approach used Archard’s wear law
�45� to predict wear volume for any specified number of cycles
from the time history of contact forces and CoP slip velocities on
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here V is the total wear volume of the medial and lateral sides
ver N cycles, N is the assumed total number of cycles �5
106�, i is a discrete time instant during the one-cycle dynamic

imulation �1 through n�, j is the side �medial or lateral�, k is the
ssumed material wear rate �1�10−7 mm3 /N m �46��, Fij is the
ontact force magnitude at time instant i on side j, and dij is the
liding distance of the CoP at time instant i on side j. Due to
ymmetry of the implant geometry, the predicted value of Fij on
ach side was taken as half the total contact force obtained from
qs. �2� and �3�. Prediction of dij on each side required determin-

ng the magnitude of the slip velocity vij of the CoP and multi-
lying by the time increment �t �4�. To find vij, we used the
inematic concept of two points fixed on a rigid body �47�

vij = AvO + A�B � pOCoP �5�

n this equation, A represents the tibial insert, B represents the
emoral component, O is the femoral coordinate system origin
ocated at the intersection of the flexion-extension and superior-
nferior translation axes, CoP is the medial or lateral center of
ressure location treated as a point fixed in body B, AvO is the
elocity of point O with respect to reference frame A as deter-
ined from the relative translation of the femoral component ori-

in, A�� is the angular velocity of body B with respect to refer-
nce frame A as determined from the flexion-extension of the
emoral component, and pOCoP is the position vector from point O
o point CoP. While the values of AvO and A�B were obtained
irectly from the dynamic simulations, calculation of the CoP
ocation on each side required six additional Kriging models �i.e.,
hree components per side�. Each Kriging model was created by
tting the average of the five CoP locations obtained from each
X ,�� sample pair. Wear volumes calculated by the surrogate con-
act model using the CoP-based approach were compared with
hose calculated by the EF contact model using both the CoP-
ased approach and a previously published element-based ap-
roach �4,8� to verify that the surrogate model wear volume pre-
ictions were accurate.

Surrogate Contact Model Application. As a practical applica-
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Fig. 2 Overview of global and local sensi
formed with the surrogate contact model.
placements „labeled A–I… used for the glob
component placements, input loads, and in
involving Monte Carlo methods applied to
ion of the proposed surrogate contact modeling approach, we

41010-4 / Vol. 131, APRIL 2009
performed two types of sensitivity analyses to investigate how
machine setup issues affect predicted wear volume. The first was
a global sensitivity analysis to investigate the effect of large varia-
tions in component placements within the ranges defined in Fig.
2�a� �i.e., �10 mm /deg�. Specifically, we generated 400 combi-
nations of component placements using 20 evenly spaced values
of femoral flexion axis SI location and tibial insert AP slope. For
each combination, the surrogate-based contact model was used to
perform a dynamic simulation and predict wear volume. Percent
changes in predicted wear volume were calculated relative to the
maximum predicted value from all global sensitivity analysis re-
sults. The second category was a local sensitivity analysis to in-
vestigate the effect of small variations in nominal component
placements and motion and load inputs by using Monte Carlo
techniques �Fig. 2�b��. For the local sensitivity analysis, allowable
variations in motion and load input curves were defined using
experimental observations from eight different implant designs
tested in a Stanmore simulator machine �36�. Deviations of the
experimental input curves from the ISO standard curves were cal-
culated and analyzed using principal component analysis �48�,
with the first two principal components being sufficient to account
for over 98% of the variability in each type of curve. These two
components were used to generate new deviation curves by select-
ing component weights as uniformly distributed random numbers
within the bounds of the experimental curves. These deviation
curves were added to the ISO standard curves to create new input
motion and load curves as needed for the Monte Carlo analyses.

To distinguish between the effects of small errors in motion and
load inputs and small errors in component placements, the local
sensitivity analysis performed four types of Monte Carlo analyses
for each of the nine nominal component placements for a total of
36 Monte Carlo analyses in all. Each type of Monte Carlo analysis
varied input profiles and component placements separately or to-
gether. The first type varied motion and load profiles within 100%
of their allowable ranges and also varied component placements
within �1 mm /deg. The second type was similar but used smaller
variations of only 10% of the allowable range for motion and load
profiles and �0.1 mm /deg for component placements. The third
type varied only motion and load profiles within 100% of their
allowable ranges and imposed no variations on component place-
ments. Finally, the fourth type varied component placements

Placement

Motion

Loads

b

ty analyses of predicted wear volume per-
… Large variations in nominal component
ensitivity analysis. „b… Small variations in

t motion used for local sensitivity analysis
h nominal component placement.
C

F
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tivi
„a
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pu
within �1 mm /deg but imposed no variations on motion and load
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rofiles. For all types, percent changes in predicted wear volume
ere calculated relative to values obtained from the nominal com-
onent placements using the ISO standard inputs. Each Monte
arlo analysis was performed on a 3.4 GHz Pentium IV PC and

nvolved at least 1000 dynamic contact simulations. The conver-
ence criterion for each analysis was met when the mean and
oefficient of variance �i.e., 100 � standard deviation/mean� for
he last 10% of the wear predictions were within 2% of the final

ean and coefficient of variance �49�.

esults
For the computational evaluation, the dynamic simulations per-

ormed with the surrogate contact model closely reproduced the
lanar motions, contact forces, and wear volumes predicted with
he EF contact model for all nine component placements. On av-
rage, the RMSEs for planar motions and contact forces were less
han 0.125 mm and 4 N, respectively �Fig. 3�. While each dy-
amic simulation performed with the EF contact model required
pproximately 13 min of CPU time, each simulation performed
sing the surrogate contact model required 13 s. For both the
urrogate contact model and the EF contact model, the CoP-based
pproach for predicting wear volumes reproduced the element-
ased EF results to within 0.5% error �Table 1�.

For the practical application, the global and local sensitivity
nalyses revealed that large variations in component placements
elative to the original locations and small variations in input mo-
ion relative to the ISO standard had a significant affect on pre-
icted wear volume. For the global sensitivity analysis, predicted
ear volume was sensitive to large variations in the SI location of

he femoral flexion axis �maximum change of 26% when the AP
lope of tibial insert held fixed�, the AP slope of the tibial insert
maximum change of 13% when the SI location of femoral flexion
xis held fixed�, or both parameters simultaneously �maximum
hange of 33%� �Fig. 4�. For the local sensitivity analysis, wear
olume ranges were larger �mean of 18 mm3 compared to 2 mm3�
nd 50% percentile wear volume results were lower �mean of
3 mm3 compared to 31 mm3� when motion and load inputs and
omponent placements were varied within 100% rather than 10%
f their allowable ranges �Figs. 5�a� and 5�b��. When inputs and
lacements were varied separately within 100% of their allowable
anges, predicted wear volume was much more sensitive to mo-
ion and load inputs than to component placements �maximum
hange of 64% compared to 5%; Figs. 5�c� and 5�d��. Finally,
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ig. 3 Root-mean-square errors in joint motions and contact
orces for each nominal component placement. Errors are com-
uted by comparing dynamic simulation results generated with
he elastic foundation contact model and the surrogate contact

odel.
hen an additional global sensitivity analysis was performed with

ournal of Biomechanical Engineering
the original component placements to separate the influence of the
different inputs, predicted wear volume varied approximately lin-
early with small changes in each input curve but was more sensi-
tive to changes in flexion-extension motion �maximum change of
47%; Fig. 6� than to changes in input loads �maximum change of
20% for Fx and 14% for Fy; Figs. 6�a� and 6�b��. Each Monte
Carlo analysis performed with the surrogate contact model re-
quired 4 h of CPU time compared to an estimated 230 h with the
EF contact model.

Discussion
Computational speed is a major limiting factor for performing

sensitivity and optimization studies of total knee replacement de-
signs. Unlike constraint-based joint models, knee joint contact
models require repeated geometry evaluations that consume the
vast majority of the CPU time in a dynamic contact simulation
�50�. This paper has presented a novel surrogate modeling ap-
proach for performing efficient dynamic contact simulations of
human joints. The surrogate contact model was developed to re-
place the original EF contact model to avoid time-consuming re-
peated evaluation of the surface geometry during dynamic simu-

Table 1 Comparison between wear volume predictions „mm3
…

made with the elastic foundation contact model and the surro-
gate contact model for each of the nine nominal component
placements. Each prediction was made for 5Ã106 motion
cycles. Both contact models can predict wear volume using a
simple center of pressure-based approach, while only the elas-
tic foundation contact model can make predictions using a
more detailed element-based approach.

Nominal
placement

Elastic foundation
contact model Surrogate

contact model
CoP-basedElement-based CoP-based

A 37.07 37.05 36.98
B 34.03 34.02 33.91
C 39.04 39.03 38.87
D 32.91 32.89 32.88
E 30.78 30.76 30.77
F 34.20 34.19 34.14
G 29.37 29.36 29.32
H 26.45 26.44 26.38
I 29.37 29.35 29.31
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Fig. 4 Predicted wear volume as a function of large variations
in component placements as calculated from 400 dynamic
simulations performed with the surrogate contact model. Wear
increases linearly when the femoral flexion axis is translated
superiorly and quadratically when the tibial slope is increased

anteriorly or posteriorly.
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ation. The surrogate contact model produced dynamic simulation
nd wear results that accurately matched those from the EF con-
act model but with an order of magnitude improvement in com-
utational speed. This speed improvement would have been even
ore significant if a finite element contact model had been the

riginal model. The 36 Monte Carlo analyses demonstrated how
nalyses that would have been impractical �or at a minimum
ould have required extensive parallel processing� can be easily

chieved on a single computer with the surrogate contact model.
he sensitivity results also have practical value, suggesting that
ear volume generated by simulator machines may be sensitive to

arge variations in component placements within the machine as
ell as small variations in the flexion-extension motion input to

he machine.
The primary benefit of using surrogate contact models in dy-

amic simulations is improved computational efficiency. For elas-
ic foundation or finite element contact models, the computation
ime per dynamic simulation is largely determined by the number
f deformable contacts in the model. Thus, a musculoskeletal
omputer model utilizing deformable contact models for multiple
oints could easily require hours or days of CPU time to complete

single dynamic simulation. Repeated dynamic simulations as
art of a sensitivity or optimization study would become imprac-
ical. By using surrogate contact models instead, one could elimi-
ate the computational cost of the contact solver as the limiting
actor. The larger the number of deformable contacts in a multi-
ody dynamic model, the greater the anticipated benefit from us-
ng surrogate contact models.

While we have shown that surrogate contact models can be
eneficial for sensitivity studies, the greatest computational ben-
fit is likely to occur for optimization studies. For stochastic sen-
itivity studies, statistically based alternatives to Monte Carlo
nalyses exist that require fewer repeated simulations. For ex-
mple, Laz et al. �51� used the mean value method �52� to perform
robabilistic elastic foundation simulations of a TKR design and
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ig. 5 Box plot distribution of predicted wear volume gener-
ted by four Monte Carlo analyses using the surrogate contact
odel. Each box has „from bottom to top… one whisker at the

0th percentile, three lines at the 25th, 50th, and 75th percen-
ile, and another whisker at the 90th percentile. Outliers are
ndicated by black crosses located beyond the ends of the
hiskers. For the first and second Monte Carlo analyses, mo-

ion and load inputs and component placements are varied to-
ether within „a… 100% or „b… 10% of their maximum ranges,
espectively. For the third and fourth Monte Carlo analyses, „c…
otion and load inputs or „d… component placements are var-

ed separately within 100% of their maximum ranges,
espectively.
educed the number of simulations by a factor of 4 compared to a
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traditional Monte Carlo approach. Since the CPU time per simu-
lation was 6 min, the use of a surrogate contact model could still
reduce the overall computation time by an additional factor of 28,
assuming we could achieve comparable speed improvements for
the 3D situation. In contrast, no good methods exist for reducing
the number of simulations in optimization studies. For those situ-
ations, the factor of 60 reduction in computation time �i.e.,
13 min–13 s� could mean the difference between an impossible
and an achievable optimization study.

Other than computational efficiency, surrogate contact models
possess the additional benefits of being adaptable and flexible.
First, the surrogate-based contact modeling approach presented
here is not limited to the knee joint. Theoretically, the approach
could be applied to any joint contact model whose input-output
relationships can be sampled. The modified HQ sampling method
should be suitable for any joint contact model once the sensitive
directions are identified. Therefore, neither type of joint �e.g., hip
or knee or ankle� nor type of contact model �e.g., EF or finite
element� nor type of material model �e.g., linear or nonlinear� is
critical for developing a surrogate contact model. The benefit of
using an EF contact model to generate the required sample points
was that it is relatively fast computationally for performing re-
peated static analyses. Finite element models would require more
time for each static analysis, plus the inputs are usually applied
displacements rather than loads. For the finite element situation, it
could be necessary to curve fit the force-displacement curve at
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Fig. 6 Predicted wear volume as a function of variations in „a…
anterior-posterior load and femoral flexion angle and „b… axial
load and femoral flexion angle. Both plots were created by per-
forming dynamic simulations with the surrogate model and
changing the weight of the first principal component for each
input profile variation away from the ISO standard. Each weight
was normalized to be between 0 and 1. The cross marker „�…

represents the ISO standard input with no superimposed input
profile variations „i.e., weights of 0… while the circle marker „�…

represents the ISO standard input with maximum superim-
posed input profile variations „i.e., weights of 1….
each sample point to produce new points at fixed force incre-
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ents. Second, the surrogate contact model represents the real
urface geometry implicitly within the design space. Since the
urrogate modeling approach uses the real surface geometry to
enerate the sampling points, no idealization of complex surface
eometry is required. Third, the approach is not limited to a single
urrogate model fitting method. While we used Kriging in the
resent study, any of the fitting methods mentioned previously
ould be investigated as well �24,26,53,54�. Though polynominal
esponse surfaces are the most commonly used surrogate model,
riging has the advantage of interpolating the sample point out-
uts, which is appealing for deterministic computer models
15,54�.

The global sensitivity results demonstrate the importance of
eveloping a standardized method for defining the location of the
emoral flexion axis. For a given tibial slope, predicted wear vol-
me varied approximately linearly with changes in the superior-
nferior location of the femoral flexion axis, increasing as the axis
as translated superiorly �Fig. 4�. Superior translation of the flex-

on axis increases the distance to the CoP, thereby increasing the
agnitude of the slip velocity in Eq. �4�. Thus, to minimize wear

or any given implant design, one can simply locate the femoral
exion axis close to the articular surfaces. In contrast, the pre-
icted wear volume varied approximately quadratically with
hanges in tibial slope, increasing as the insert was tilted anteri-
rly or posteriorly away from its neutral position �Fig. 4�. Increas-
ng the tibial anterior or posterior slope increases the AP tibial
liding distance �55�, thereby leading to an increase in predicted
ear volume �56,57�.
In contrast, the local sensitivity results demonstrate the impor-

ance of controlling machine inputs closely, especially the femoral
exion angle. The Monte Carlo analyses and the additional global
ensitivity analysis revealed when small variations were imposed
n the input motion, loads, and component placements, only
ariations in the femoral flexion angle resulted in large changes in
redicted wear volume. When the flexion angle was varied within
00% of its allowable range, the drop in 50th percentile wear
olume results �Figs. 5�a� and 5�c�� relative to the ISO standard
nputs �i.e., 50% percentile results in Figs. 5�b� and 5�d�� was due
o the use of imposed variations that always reduced the amplitude
f the curve �36�. This finding is consistent with previous studies
howing that predicted wear volume decreases when the ampli-
ude of the input curves is reduced �58–60�. Thus, another way to

inimize wear for any given implant design is to use a control
ystem that systematically undershoots the peaks in the input
exion-extension curve. Combining this approach with an inferi-
rly located femoral flexion axis could cut wear volume by more
han 50% compared to the original component placement with
SO standard inputs. The development of a standard for accept-
ble variations in input flexion-extension motion should be con-
idered as well.

Despite its computational advantages, the proposed surrogate
ontact modeling approach possesses several important limita-
ions. The biggest one is that new surrogate contact models must
e generated if implant geometry, insert thickness, or material
roperties are changed, at least for the current formulation. The
eometry limitation makes it impossible to use surrogate contact
odels for progressive wear simulations, where the surface geom-

try is changed gradually over an iterative sequence of wear simu-
ations. However, this limitation is not serious if only wear vol-
me is of interest, as recent progressive wear simulation studies
ave reported that predicted wear volume �but not wear area or
epth� is relatively insensitive to whether or not the surface ge-
metry is changed gradually �8,9�. Theoretically, changes in insert
hickness or material model parameter values could be accommo-
ated by adding more input variables to the surrogate model fit-
ing process �e.g., make insert thickness an additional surrogate

odel input�. For contact forces, a changing value of Young’s
odulus �E� in a linear elastic material model can be accommo-
ated without adding another input variable. If all sample points

ournal of Biomechanical Engineering
are generated using a value of E=1, then the contact force output
by the surrogate model can be scaled by the desired value of E
�29�.

A number of other limitations exist as well. First, the current
surrogate contact model is restricted to sagittal plane motion,
where contact force is dominated by SI translation of the femoral
component. For 3D simulations, contact force will be highly sen-
sitive to changes in varus-valgus rotation as well �40�. In addition
to an increased number of sensitive directions, the number of
sample points will also need to increase. However, the increased
computational cost for evaluating more sample points is paid up
front since the sampling process is only performed once. Second,
the calculation of Fx is dependent on the value of Fy computed
from Eq. �2�. Thus, the quality of the Fy prediction will directly
impact the Fx calculation. The current approach works fine for
sagittal plane models with a single sensitive direction, but an in-
dependent calculation of Fx may be needed for 3D situations
where more than one sensitive direction is present. Third, the CoP
approach for calculating wear volume may not work well for
some types of 3D motion. For example, for a sphere spinning
about a vertical axis while in contact with a plane, the CoP would
be located at the bottom of the sphere where the slip velocity is
zero. Thus, no wear volume would be calculated, even though the
element-based approach would calculate a nonzero wear volume
based on the pressures and slip velocities throughout the contact
area. Consequently, the CoP approach will work well for analysis
of TKR designs undergoing 3D motion only if the amount of
internal-external rotation is “small.” Fourth, our Monte Carlo re-
sults are limited to cruciate-retaining designs with a nonconformal
tibial insert. Whether or not our conclusions are generalizable to
other implant designs and simulator machines would require fur-
ther investigation.

In summary, this paper has demonstrated that surrogate contact
modeling can significantly improve the computational speed of
dynamic contact simulations and is appropriate for 2D sensitivity
and optimization studies incorporating deformable contact. Re-
finement of the current 2D approach and extension to 3D prob-
lems are topics of ongoing research. Once surrogate contact mod-
els are developed for 3D situations, it should be possible to create
dynamic musculoskeletal models with multiple deformable joints
that can be simulated in a short amount of CPU time. Such models
should improve our ability to analyze new knee implant designs
rapidly and to predict muscle forces across joints where contact
forces may have an important stabilizing effect.
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Appendix
Below we provide links to the MATLAB software tools used in

this study to develop surrogate contact models.
Hammersley Quasirandom Sampling:
http://people.scs.fsu.edu/~burkardt/m_src/hammersley/
hammersley.html
DACE Kriging Toolbox:
http://www2.imm.dtu.dk/~hbn/dace/
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