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Introduction
Optimization methods are used extensively in biomechanics

Evaluation of a Particle Swarm
Algorithm For Biomechanical
Optimization

Optimization is frequently employed in biomechanics research to solve system identifica-
tion problems, predict human movement, or estimate muscle or other internal forces that
cannot be measured directly. Unfortunately, biomechanical optimization problems often
possess multiple local minima, making it difficult to find the best solution. Furthermore,
convergence in gradient-based algorithms can be affected by scaling to account for
design variables with different length scales or units. In this study we evaluate a recently-
developed version of the particle swarm optimization (PSO) algorithm to address these
problems. The algorithm’s global search capabilities were investigated using a suite of
difficult analytical test problems, while its scale-independent nature was proven math-
ematically and verified using a biomechanical test problem. For comparison, all test
problems were also solved with three off-the-shelf optimization algorithms—a global
genetic algorithm (GA) and multistart gradient-based sequential quadratic programming
(SQP) and quasi-Newton (BFGS) algorithms. For the analytical test problems, only the
PSO algorithm was successful on the majority of the problems. When compared to pre-
viously published results for the same problems, PSO was more robust than a global
simulated annealing algorithm but less robust than a different, more complex genetic
algorithm. For the biomechanical test problem, only the PSO algorithm was insensitive
to design variable scaling, with the GA algorithm being mildly sensitive and the SQP and
BFGS algorithms being highly sensitive. The proposed PSO algorithm provides a new
off-the-shelf global optimization option for difficult biomechanical problems, especially
those utilizing design variables with different length scales or units.
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and so can be sensitive to the initial guess. Experimental or nu-
merical noise can exacerbate this problem by introducing multiple
i6cal minima into the problem. For some problems, multiple local

search to predict movement-related quantities that cannot be m

; R h : ituations, the necessary gradient values cannot be obtained ana-
verse static optimizations have been_ used to _predlct musq ically, and finite difference gradient calculations can be sensi-
Ilgament, and joint contact forces durllng e.x.per!mental. Or Pr%ve to the selected finite difference step size. Furthermore, the use
dicted movementse.g.,[1-12). System identification optimiza- of design variables with different length scales or units can pro-

tions have been employed_ to tune a variety of musculoskele&eﬂCe poorly scaled problems that converge slowly or not at
model parameters to e_xpe_rlmental movement (iat@.,[l3—lﬂ_). _all [21,22, necessitating design variable scaling to improve
Image matching optimizations have been performed to align "B'erformance

plar_1t and bone mo_dels o YiY_O fluoroscopic images collected Motivated by these limitations and improvements in computer
durl_ng Ioa_ded functl_onal ac_tlv!tle(sg.g.,[ls—ZQ)_ ) speed, recent studies have begun investigating the use of nongra-
_ Since biomechanical optimization problems are typically noRjient giobal optimizers for biomechanical applications. Neptune
linear in the design variables, gradient-based nonlinear prograégé compared the performance of a simulated anneaB®) al-

. S . [minima may exist due to the nature of the problem itself. In most
sured experimentally. Forward dynamic, inverse dynamic, and jﬁ

ming has been the most widely used optimization method. TR ithm with that of downhill simplexDS) and sequential qua-
increasing size and complexity of biomechanical models has afgQic programmingSQP algorithms on a forward dynamic op-
led to the parallelization of gradient-based algorithms, since gigmization of bicycle pedaling utilizing 27 design variables.
dient calculations can be easily distributed to multiple processat§nlated annealing found a better optimum than the other two
[1-3]. However, gradient-based optimizers can suffer from sever@kthods and in a reasonable amount of CPU time. More recently,
important limitations. They are local rather than global by natur€yest and Casiuf5] evaluated a parallel implementation of a
genetic algorithmGA) using a suite of analytical tests problems
Tress correspondence to: B. J. Fregly, Ph.D., Assistant Professor, DeparthhEh up .tO 32 dels,lgn. Va",lables,and f.orward dynamlc, optlmlgatlons
of Mechanical & Aerospace Engineering, 231 MAE-A Building, P.O. Box 1162509T jumping and isokinetic cycling with up to 34 design variables.
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global optimization methods—particle swarm-optimizatiorfable 1 Standard PSO algorithm parameters used in the
(PSO—for use on hiomechanical problems. A recently developedesent study

variant of the PSO algorithm is used for the investigation. Thf’aramete Descrintion Value
algorithm’s global search capabilities are evaluated using a previ- P

ously published suite of difficult analytical test problems with p Population sizénumber of particles 20
multiple local minimg 5], while its insensitivity to design variable c Cognitive trust parameter 2.0
scaling is proven mathematically and verified using a biomechani- c Social trust parameter 2.0
cal test problem. For both categories of problems, PSO robust- Initial inertia 1
ness, performance, and scale independence are compared to thaf, Inertia reduction parameter 0.05
of three off-the-shelf optimization algorithms—a genetic algo- & Bound on velocity fraction 0.5
rithm (GA), a sequential quadratic programming algorit(®QP, vy Velocity reduction parameter 0.05
and a Broydon-Fletcher-Goldfarb-Shan(®@FGS quasi-Newton d Dynamic inertia/velocity reduction delggunction | 200
algorithm. In addition, previously published resul] for the evaluations

analytical test problems permit a comparison with a more com-
plex GA algorithm(GA”), a simulated annealing algorith(BA),

a different SQP algorithntSQP), and a downhill simplexDS) to 0. lteration countek is used to monitor the total number of

algorithm. swarm iterations, while iteration counteis used to monitor the
number of swarm iterations since the last improvemeng,n
2 Theory Thus,t is periodically reset to zero during the optimization while

k is not.

2.1 Particle Swarm Algorithm. Particle swarm optimization The algorithm flow can be represented as follows:

is a stochastic global optimization approach introduced by

Kennedy and Eberhaf23]. The method’s strength lies in its sim- 1 Initialize

plicity, being easy to code and requiring few algorithm parameters™

to define convergence behavior. The following is a brief introduc-

tion to the operation of the particle swarm algorithm based on a d

recent implementation by Fourie and Groenw[fd] incorporat-

ing dynamic inertia and velocity reduction. (b) Set counter=0, t=0. Set random nlimeer. seed
_Consider a swarm gf particles, where each particle’s position (¢) Randomly initialize particle positions, e D in 9 for

X represents a possible solution point in the problem design space 1=1,...p L ) o i max

D. For each particlé, Kennedy and EberhafR3] proposed that (d) Randomly initialize particle velocities€ v, = 5" for

(@ Set constantsc, ¢i, Cp, Knaxs V5, Wo, ¥4, Wg, and

the positionx{(+1 be updated in the following manner: i=1,...p ) — )
: _ (e) Evaluate cost function value§ using design space co-
Xiee1 = Xic+ Ve (o ordinatesxg for i=1,...,p
with a pseudovelocity},, calculated as follows: (f)  Setfpei=fp andpy=xp for i=1,....p

g i P
Yo =W + Cyra (Pl = X)) + o oG = X0 ) (@) Setfp.to bestf,.andgg to correspondingg
Here, subscripk indicates a(unit) pseudotime increment. The 2. Optimize
pointpy is the best-found cost location by particlep to time step ] ) . ]
k, which represents the cognitive contribution to the search vector (8 Up(ijate par:g!(cle velocity vectorg,,, using Eq.(2)
vi,,. Each component ofi,,, is constrained to be less than or ~ (0) If »;>w.7 for any component, then set that compo-
equal to a maximum value defined iff}3" The pointg, is the nent to its maximum allowable value
global best-found position among all particles in the swarm up to ~ (€)  Update particle position vectos,, using Eq.(1)

time k and forms the social contribution to the velocity vector. ~ (d) Evaluate cost function valuef,, using design space
Cost function values associated withandgy are denoted by}, coordinatesq, fori=1,....p

and f3, respectively. Random numbers andr, are uniformly (€ If fioy=Theg thenfpes=fi 1, Plar=Xper fOri=1,...,p
distributed in the interval0,1]. Shi and Eberharfi25] proposed (f) I fy < TBeq thenfle=fis, Gu1=Xj fori=1,....p
that the cognitive and social scaling parametgrandc, be se- (9) If fl.ewas improved in(e), then reset=0, otherwise
lected such that;=c,=2 to allow the product;r, or c,r, to have incrementt

a mean of 1. The result of using these proposed values is that the (h) If the maximum number of function evaluations is ex-
particles overshoot the attraction points and gy half the time, ceeded, then go to 3

thereby maintaining separation in the group and allowing a greater (i) If t=d, then multiplyw,,; by (1-wg) and v by (1
area to be searched than if the particles did not overshoot. The - vg)

variablew,, set to 1 at initialization, is a modification to the origi- () Incrementk

nal PSO algorithni23]. By reducing its value dynamically based (k) Go to 2a)
on the cost function improvement rate, the search area is gradually
reduced26]. This dynamic reduction behavior is defined \wy, 3. Report results
the amount by which the inertia, is reducedyy, the amount by 4. Terminate
which the maximum velocityy; is reduced, and, the number ) ) ) )
of iterations with no improvement ig, before these reductions  This algorithm was coded in the C programming language by
take placg24] (see algorithm flow description below the lead authof27] and was used for all PSO analyses performed
Initialization of the algorithm involves several important stepdn the present study. A standard population size of 20 particles was
Particles are randomly distributed throughout the design spa&g€d for all runs, and other algorithm parameters were also se-
and particle velocitiess, are initialized to random values within !ected based on standard recommendati@able 1 [27-29. The
the limits 0< »,<»7® The particle velocity upper limip?® is C source code for our PSO algorithm is freely available at http://

calculated as a fraction of the distance between the upper Mw.mae.ufl.edG}fregIy/downloads/pso.zip.

lower bound on variables in the design spag&™=x(xyg—X_g) 2.2 Analysis of Scale SensitivityOne of the benefits of the
with k=0.5 as suggested [126]. Iteration counter& andt are set PSO algorithm is its insensitivity to design variable scaling. To
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prove this characteristic, we will use a proof by induction to showb), we can conclude that any linear scaling of the design variables
that all particles follow an identical path through the design spacer subset therepfwill have no effect on the final or any interme-
regardless of how the design variables are scaled. In actual P&i@xe result of the optimization, since all velocities and positions
runs intended to investigate this property, use of the same randare scaled accordingly. This fact leads to identical step intervals
seed in scaled and unscaled cases will ensure that an identlmeihg taken in the design space for a scaled and an unscaled
sequence of random; andr, values are produced by the com-version of the same problem, assuming infinite precision in all
puter throughout the course of the optimization. calculations.

Consider an optimization problem withdesign variables. An  In contrast, gradient-based optimization methods are often sen-
n-dimensional constant scaling vectdcan be used to scale anysitive to design variable scaling due to algorithmic issues and

or all dimensions of the problem design space: numerical approximations. First derivative methods are sensitive
because of algorithmic issues, as illustrated by a simple example.
a Consider the following minimization problem with two design
I variables(x,y) where the cost function is
(=1 & (3 y2
2
. X+ — 14
: 100 (14)
¢n with initial guess(1,1). A scaled version of the same problem can
We wish to show that for any time stdg=0, be created by lettink=x, ¥=y/10 so that the cost function
, becomes
v = L (4) o s
X“+y (15)
Xk = EXi () with initial guess(1,10. Taking first derivatives of each cost func-

wherex, andw, (dropping superscrigt are the unscaled position tion with respect to the corresponding design variables and evalu-
and velocity, respectively, of an individual particle arf=Zx, ating at the initial guesses, the search direction for the unscaled
and v = v are the corresponding scaled versions. problem is along a line rotated 5.7° from the positivexis and
First, we must show that our proposition is true for the bad@' the scaled problem along a line rotated 45°. To reach the
case, which involves initializatiofk=0) and the first time step OPtimum in a single step, the unscaled problem requires a search
(k=1). Applying the scaling vectof to an individual particle direction rotated 84.3° and the scaled problem 45°. Thus, the

ositionxg during initialization produces a scaled particle ositioscaled problem can theoretically reach the optimum in a single
E,_ 0 9 P P P r§tep while the unscaled problem cannot due to the effect of scaling
o

on the calculated search direction.
X = Xo (6) Second derivative methods are sensitive to design variable scal-
ing because of numerical issues related to approximation of the
Hessian(second derivativematrix. According to Gill et al[21],
Po=L&Po,  95= LYo (7)  Newton methods utilizing an exact Hessian matrix will be insen-
sitive to design variable scaling as long as the Hessian matrix
remains positive definite. However, in practice, exact Hessian cal-
Vo= k(XUg — X.p) (8) culations are almost never available, necessitating numerical ap-
proximations via finite differencing. Errors in these approxima-
tions result in different search directions for scaled versus
v = k(X\g — X g) = k({Xup — X g) = L k(Xug — XL8)] = Lo uns_caled v_ersions o_f the same _p_roblem. Even a small _amount_of
design variable scaling can significantly affect the Hessian matrix
© so that design variable changes of similar magnitude will not pro-
From Egs.(1) and (2) and these initial conditions, the particleduce comparable magnitude cost function chafgés Common
pseudovelocity and position for the first time step can be writtegradient-based algorithms that employ an approximate Hessian

This implies that

In the unscaled case, the pseudovelocity is calculated as

In the scaled case, this becomes

as include Newton and quasi-Newton nonlinear programming meth-
_ + VAR _ 10 ods such as BFGS, SQP methods, and nonlinear least-squares

V1= Wog + €yl 1(Po — Xo) + Cal 2(go —~ Xo) (100 ethods such as Levenberg—Marqudiit]. A detailed discus-

V. (11) sion of the influence of design variable scaling on optimization
X1=Xot vy algorithm performance can be found in Gill et @1].
in the unscaled case and
V] = Wopg + Cif 1(Pg = Xg) + Caf 2(gg = %) 3 Methodology
=Wodw + Cir 1(£Po = EXo) + Caf 2(800 = EX0) 3.1 Optimization Algorithms. In addition to our PSO algo-

(12 rithm, three off-the-shelf optimization algorithms were applied to
all test problemganalytical and biomechanical—see bejofor

Pty = - — comparison purposes. One was a global GA algorithm developed

_ X=Xo* v =t g[>-<(.,+ v_l] & (13 by Deb[30-32. This basic GA implementation utilizes one mu-

in the scaled case. Thus, our proposition is true for the base cag@on operator and one crossover operator along with real encod-

~ Next, we must show that our proposition is true for the indugng to handle continuous variables. The other two algorithms were

tive step. If we assume that our proposition holds for any tim@mmercial implementations of gradient-based SQP and BFGS

stepk=j, we must prove that it also holds for time stepj+1. algorithms(VisualDOC, VanderplaatR & D, Colorado Springs,

We begin by replacing subscriptwith subscriptj in Egs.(4) and  CO).

(5). If we then replace subscript 0 with subscrjfnd subscript 1 All four algorithms (PSO, GA, SQP, and BFGSvere parallel-

with subscriptj +1 in Egs.(12) and(13), we arrive at Eqs(4) and ized to accommodate the computational demands of the biome-

(5) where subscripk is replaced by subscripit+1. Thus, our chanical test problem. For the PSO algorithm, parallelization was

proposition is true for any time stegp-1. performed by distributing individual particle function evaluations
Consequently, since the base case is true and the inductive steplifferent processors as detailed[B8]. For the GA algorithm,

is true, Eqs(4) and(5) are true for allk=0. From Eqs(4) and individual chromosome function evaluations were parallelized as

= L Worg + Cir 1(Po — Xo) + Cof o(Tp — Xo) ] = &7y
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described irf5]. Finally, for the SQP and BFGS algorithms, finite ) X ) X;
difference gradient calculations were performed on different pro- sin?| x; - s + sir{ x, - s
cessors as outlined if84]. A master-slave paradigm using the Hq(Xq,%0) =

(16)

Message Passing Interfa¢®IPl) [35,36 was employed for all d+1

parallel implementations. Parallel optimizations for the biomevhere

chanica_l test_ problem were run on a cluster of Linux-bas_ed PCsin X1, % € [~ 100,100

the University of Florida High-performance Computing and

Simulation Research Laboratoft.33 GHz Athlon CPUs with d=1(x, - 8.6998% + (x, — 6.76652

256 MB memory on a 100 Mbps switched Fast Ethemet net)/vorkl; n-thousand function evaluations were used for this problem
While the PSO algorithm used standard algorithm paramete . This inverted version of the F6 function used by Schaffer et

for all optimization runs, minor algorithm tuning was performe | : . . -
; . . .[37] has two dimensions with several local maxima around th
on the GA, SQP, and BFGS algorithms for the biomechanical tedg%gal] mziiml?n? ofel 82\(3 0 severatloc around the
ible ’ o

problem. The goal was to give these algorithms the best possibl
chance for success against the PSO algorithm. For the GA algo-
rithm, preliminary optimizations were performed using population
sizes ranging from 40 to 100. It was found that for the specified
maximum number of function evaluations, a population size of 60 X1,% € [—100,10Q

produced the best results. Consequently, this population size s problem was solved using 20,000 function evaluations per
used for all subsequent optimization ru@alytical and biome- oo n '

chanica). For the SQP and BFGS algorithms, automatic tuning o Ha: This test function from Corana et 4188] was used with

the finite difference step siz&DSS was performed separately gimensionalityn=4, 8, 16, and 32. The function contains a large

for each design variable. At the start of each gradient-based rgiymber of local minima(on the order of 1) with a global
forward and central difference gradients were calculated for eagfinimum of 0 at|x;| <0.05.

design variable beginning with a relative FDSS of 10rhe step n
size was then incrementally decreased by factors of 10 until the,, o) =S (t-sgnz) +z)*-c-d if |x-z|<t
absolute difference between forward and central gradient results 31"/~ d; 'Xi2 otherwise
was a minimum. This approach was taken since the amount of
noise in the biomechanical test problem prevented a single stable (18
gradient value from being calculated over a wide range of FDSS
values(see Sec. b The forward difference step size automatically %  [~1000,1000
selected for each design variable was used for the remainderdtere
the run.

=

SiP(\x4 +x3) - 0.5
(1+0.001% +x2))?

Hz(xl,XZ) =0.5- (17)

i=1

+ 0.49994@- sgnx;) -s, ¢=0.15,

3.2 Analytical Test Problems.The global search capabilities
of our PSO implementation were evaluated using a suite of diffi-

cult analytical test problems previously published by Soest and 1 i=1,5,9,..
Casiug[5]. In that study, each problem in the suite was evaluated 1000 i=2.6.10

using four different optimizers: SA, GA SQP, and DS, where s=0.2, t=0.05, andd = T
an asterisk indicates a different version of an algorithm used in 10 1=3,711,.
our study. One thousand optimization runs were performed with 100 i=4,8,12,..

each optimizer starting from random initial guesses and USiRge use of the floor function in Eq18) makes the search space
standard optimization algorithm parameters. Each run was termir this problem the most discrete of all problems tested. The
nated based on a predefined number of function evaluations farmber of function evaluations used for this problem was 50,000
the particular problem being solved. We followed an identicgh=4), 100,000(n=8), 200,000(n=16), and 400,00qn=232).
procedure with our four algorithms to permit a comparison be- For all of the analytical test problems, an algorithm was con-
tween our results and those published[. Since two of the sidered to have succeeded if it converged to within®1df the
algorithms used in our stud¢GA and SQP were of the same known optimum cost function value within the specified number
general category as algorithms ugéd (GA™ and SQP), com- Of function evaluation$5].

parisons could be made between different implementations of the 3 Biomechanical Test ProblemlIn addition to these ana-

same general algorithm. Failed PSO and GA runs were allowedi{§ical test problems, a biomechanical test problem was used to
use up the full number of function evaluations, whereas failesialuate the scale-independent nature of the PSO algorithm. Al-
SQP and BFGS runs were restarted from new random initiddough our PSO algorithm is theoretically insensitive to design
guesses until the full number of function evaluations was commariable scaling, numerical round-off errors and implementation
pleted. Only 100 rather than 1000 runs were performed with tigietails could potentially produce a scaling effect. Running the
SQP and BFGS algorithms due to a database size problem in &i@er three algorithms on scaled and unscaled versions of this test
VisualDOC software. problem also permitted investigation of the extent to which other
A detailed description of the six analytical test problems can (#gorithms are influenced by design variable scaling.
found in Soest and Casilis]. Since the design variables for each The biomechanical test problem involved determination of an

nkle joint kinematic model that best matched noisy synthetic
problem possessed the same absolute upper and lower bound Igd’ computer generateanovement data. Similar tp13], the

appc_eared in the cost fun_ction in a similar form, d_esign ve_iriab . kle was modeled as a three-dimensional linkage with two non-
scaling was not an issue in these problems. The six analytical tﬁﬁfersecting pin joints defined by 12 subject-specific parameters
problems are described briefly below. (Fig. 1). These parameters represent the positions and orientations
Hy: This simple two-dimensional functidib] has several local of the talocrural and subtalar joint axes in the tibia, talus, and
maxima and a global maximum of 2 at the coording®$998, calcaneous. Position parameters were in units of centimeters and
6.7665. orientation parameters in units of radians, resulting in parameter

468 / Vol. 127, JUNE 2005 Transactions of the ASME



Fig. 1 Experimental shank and foot surface marker configuration (left) for developing a
subject-specific kinematic ankle model defined by 12 parameters p; through p;, (right). Each
parameter defines the position or orientation of a joint axis in one of the body segments.

values of varying magnitude. This model was part of a larger Zar least-squares optimization was performed for each time frame
degree-of-freedoniDOF) full-body kinematic model used to op-in Eq. (20) to determine this optimal configuration. A relative
timize other joints as well15]. convergence tolerance of Towas chosen to achieve good accu-
Given this model structure, noisy synthetic movement datacy with minimum computational cost. A nested optimization
were generated from a nominal model for which the “true” modébrmulation[i.e., minimization occurs in Eq$19) and (20)] was
parameters were known. Joint parameters for the nominal modekd to decrease the dimensionality of the design space in Eq.
along with a nominal motion were derived froim vivo experi- (19). Equation(20) was coded in Matlab and exported as stand-
mental movement data using the optimization methodology dalone C code using the Matlab Compil@he Mathworks, Natick,
scribed below. Next, three markers were attached to the tibia akid\). The executable read in a file containing the 12 design vari-
calcaneous segments in the model at locations consistent with #ies and output a file containing the resulting cost function value.
experiment, and the 27 model DOFs were moved through thdihis approach facilitated the use of different optimizers to solve
nominal motions. This process created synthetic marker trajectg. (19).
ries consistent with the nominal model parameters and motion andlo investigate the influence of design variable scaling on opti-
also representative of the original experimental data. Finally, nmization algorithm performance, two versions of ER0) were
merical noise was added to the synthetic marker trajectoriesdenerated. The first used the original units of centimeters and
emulate skin and soft tissue movement artifacts. For each markadians for the position and orientation design variables, respec-
coordinate, a sinusoidal noise function was used with uniformtjvely. Bounds on the design variables were chosen to enclose a
distributed random period, phase, and amplitlimited to a physically realistic region around the solution point in design
maximum of +1 cm. The values of the sinusoidal parameterspace. Each position design variable was constrained to remain
were based on previous studies reported in the literd@3gl0.  within a cube centered at the midpoint of the medial and lateral
An unconstrained optimization problem with bounds on the deralleoli, where the length of each side was equal to the distance
sign variables was formulated to attempt to recover the knoviietween the malleolii.e., 11.32 cm Each orientation design
joint parameters from the noisy synthetic marker trajectories. Thariable was constrained to remain within a circular cone defined
cost function was by varying its “true” value by £30°. The second version normal-
ized all 12 design variables to be withirl,1] using

min f(p) (19
p
2X = Xyg— X
with xnorm— £2_2UB” 7B (21)
50 6 3 Xug ~ XLB
f(p) = E minz 2 (Ci = G (P, )2, (200 WwhereUB and LB denote the upper and lower bounds, respec-
k=1 9 =1 i=1 ! ! tively, on the design variable vectp#1].

. . . - ... Two approaches were used to compare PSO scale sensitivity to
wherep is a vector of 12 design variables containing the joinyay of the other three algorithms. For the first approach, a fixed
parametersq is a vector of 27 generalized coordinates for they,mper of scaled and unscaled ryh6) was performed with each
kinematic modelgj is theith coordinate of synthetic markg@t gptimization algorithm starting from different random initial
time framek, and Cij«(p,q) is the corresponding marker coordi-seeds, and the sensitivity of the final cost function value to algo-
nate from the kinematic model. At each time frarag(p,q) was  rithm choice and design variable scaling was evaluated. The stop-
computed from the current model parameferand an optimized ping condition for PSO and GA runs was 10,000 function evalu-
model configuratiory. A separate Levenberg—Marquardt nonlinations, while SQP and BFGS runs were terminated when a relative
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Table 2 Fraction of successful optimizer runs for the analytical test problems. Top half: Re-

sults from the PSO, GA, SQP, and BFGS algorithms used in the present study. Bottom half:
Results from the SA, GA, SQP, and DS algorithms used in Soest and Casius [5]. The GA and
SQP algorithms used in that study were different from the ones used in our study. Successful

runs were identified by a final cost function value within 10 -3 of the known optimum value,
consistent with  [5].

Hs
Study Algorithm H; H, (n=4) (n=8) (n=16) (n=32)

PSO 1.000 0.583 1.000 1.000 1.000 0.000
Present GA 0.000 0.034 0.000 0.000 0.000 0.002

SQP 0.00 0.11 0.00 0.00 0.00 0.00

BFGS 0.00 0.32 0.00 0.00 0.00 0.00

SA 1.000 0.027 0.000 0.001 0.000 0.000

Soest and CasiU$] GA 0.990 0.999 1.000 1.000 1.000 1.000
SQP 0.279 0.810 0.385 0.000 0.000 0.000

DS 1.000 0.636 0.000 0.000 0.000 0.000

convergence tolerance of T0or absolute convergence tolerancéoeing only mildly sensitive. In ten out of ten trials, unscaled and
of 10 was met. For the second approach, a fixed number s¢aled PSO runs converged to the same point in design Epiace
function evaluation$10,000 were performed with each algorithm 3(a)], while unscaled and scaled GA runs converged to nearly the
to investigate unscaled versus scaled convergence history. A singdene poinfFig. 3(b)]. PSO results were the most consistent from
random initial guess was used for the PSO and GA algorithntsial to trial, converging to a final cost function value between 69
and each algorithm was terminated once it reached 10,000 fuaexd 71.(Table 3. GA results were the next most consistent with
tion evaluations. Since individual SQP and BFGS runs requifimal cost function values ranging from 71 to 84. Typical unscaled
much fewer than 10,000 function evaluations, repeated runs wered scaled PSO and GA runs produced root-mean-sqRAIS)
performed with different random initial guesses until the totaharker distance, position parameter, and orientation parameter er-
number of function evaluations exceeded 10,000 at the termirrars of comparable magnitude, with PSO errors generally being
tion of a run. This approach essentially uses SQP and BFGSslightly smaller.

global optimizers, where the separate runs are like individual par-In contrast, the SQP and BFGS algorithms were highly sensi-
ticles that cannot communicate with each another but have acctés to design variable scaling in the biomechanical test problem.
to local gradient information. Finite difference step size tuning dtor the ten trials, unscaled and scaled SQP or BFGS runs rarely
the start of each run was included in the computation of number @nverged to similar points in design spdcete they axis scale
function evaluations. Once the total number of runs required o Fig. 3) and produced large differences in the final cost function
reach 10,000 function evaluations was known, the lowest cosatlue from one trial to the nextFigs. 3c) and 3d)]. Scaling
function value from all runs at each iteration was used to represémiproved the final result in seven out of ten SQP trials and in five
the cost over a range of function evaluations equal to the numlmdrten BFGS trials. The best unscaled and scaled SQP final cost

of runs. function values were 255 and 121, respectively, while those of
BFGS were 355 and 10Zable 3. Thus, scaling yielded the best
4 Results result found with both algorithms. The best SQP and BFGS trials

i ) enerally produced larger RMS marker distance erfopsto two

For the analytical test problems, our PSO glgorlthm was Moftes worsg orientation parameter errorup to five times
robust than our GA, SQP, and BFGS algorithfi®ble 2, top \yorsg, and position parameter errdip to six times worsethan
half). PSO converged to the correct global solution 100% of thgyse found by PSO or GA.
time on four of the six test problentsl, andH; with n=4,8,and  \yhen detailed convergence histories were plotted over 10,000
16). It converged 58% of the time for problehf, and not at all fynction evaluations for the biomechanical test probi@iy. 4),
for problemHg with n=32. In contrast, none of the other algoynscaled and scaled histories for PSO were indistinguishable,
rithms converged more than 32% of the time on any of the angnile those of GA were similar and those of SQP or BFGS nota-
lytical test problems. Though our GA algorithm typically exhib)y different. For PSO, only minute differences in the design vari-
ited faster initial convergence than did our PSO algoritilg. 2,  aples on the order of I8 were observed, resulting from numeri-
left column), it leveled off and rarely reached the correct finaga| round off errors caused by limitations in machine precision. To
point in design space within the specified number of functiopsach 10,000 function evaluations, 17 unscaled and 26 scaled SQP
evaluations. ) _ _runs were required compared to 56 unscaled and 44 scaled runs

When PSO results were compared with previously publishgde BFGS. The length and value of the initial flat region in the
results for the same analytical test problefb3, PSO success sQp and BFGS convergence histories was related to the number
rates were better than those of SA but worse than those of Géf FDSS tuning evaluations performed. More runs meant more
(Table 2, bottom hajf SA was successful 100% of the time onlyyning evaluations as well as an increased likelihood of finding a
on problemH;, while GA" was successful nearly 100% of thejower initial cost function value.
time on all six problems. Thus, for the global algorithms, ‘GA
was the most robust overall, followed by PSO and then SA, wi . .
GA exhibiting the worst robustness. PSO converged more slo Discussion
than did GA on all problems with available convergence plots In this paper we evaluated a recent variation of the PSO algo-
(four of the six problemsand also more slowly than did SA rithm with dynamic inertia and velocity updating as a possible
on the one problem for which SA was succesgkig. 2, right addition to the arsenal of methods that can be applied to difficult
column). biomechanical optimization problems. For all problems investi-

For the biomechanical test problem, only the PSO algorithgated, our PSO algorithm with standard algorithm parameters per-
was insensitive to design variable scaling, with the GA algorithfiormed better than did three off-the-self optimizers—GA, SQP,
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Fig. 2 A comparison of convergence history results for the analytical test problems. Left
column: Results from the PSO, GA, SQP, and BFGS algorithms used in the present study.
Right column: Results from the SA, GA, SQP, and DS algorithms used in Soest and Casius

[5]. The GA and SQP algorithms used in that study were different from the ones used in our
study. (a) Problem H,;. The SA results have been updated using corrected data provided by
Soest and Casius, since the results in  [5] accidentally used a temperature reduction rate of
0.5 rather than the standard value of 0.85 as reported. (b) Problem H,. (c) Problem H; with
n=4. (d) Problem H;with n=32. The error was computed using the known cost at the global
optimum and represents the average of 1000 runs (100 multi-start SQP and BFGS runs in
our study ) with each algorithm.
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Fig. 3 Final cost function values for ten unscaled (dark bars ) Fig. 4 Convergence history for unscaled (dark lines ) and
and scaled (gray bars ) parallel PSO, GA, SQP, and BFGS runs scaled (gray lines ) parallel PSO, GA, SQP, and BFGS runs for

for the biomechanical test problem. Each pair of unscaled and the biomechanical test problem. Each algorithm run was termi-

scaled runs was started from the same initial point (s) in design nated after 10,000 function evaluations. Only one unscaled and
space, and each run was terminated when the specified stop- scaled PSO and GA run were required to reach 10,000 function
ping criteria was met (see the text ). evaluations, while repeated SQP and BFGS runs were required

to reach that number. Separate SQP and BFGS runs were
treated like individual particles in a single PSO run for calculat-

and BFGS. For the analytical test problems, PSO robustness wgsconvergence history — (see the text ).
found to be better than that of two other global algorithms but
worse than that of a third. For the biomechanical test problem
with added numerical noise, PSO was found to be insensitive e present study, our PSO algorithm was unsuccessful on the
design variable scaling while GA was only mildly sensitive antargest test problenti; with n=32 design variables. However, in
SQP and BFGS highly sensitive. Overall, the results suggest tldatrecent study, our PSO algorithm successfully solved the
our PSO algorithm is worth consideration for difficult biomeGriewank global test problem with 128 design variables using
chanical optimization problems, especially those for which desigiopulation sizes ranging from 16 to 1283]. When the Corana
variable scaling may be an issue. test problem(Hsz) was attempted with 128 DVs, the algorithm

Though our biomechanical optimization involved a systeraxhibited worse convergence. Since the Griewank problem pos-
identification problem, PSO may be equally applicable to prolsesses a bumpy but continuous search space and the Corana prob-
lems involving forward dynamic, inverse dynamic, inverse statitem a highly discrete search space, our PSO algorithm may work
or image matching analyses. Other global methods such as SA &edt on global problems with a continuous search space. It is not
GA have already been applied successfully to such problefsown how our PSO algorithm would perform on biomechanical
[4,5,19, and there is no reason to believe that PSO would nptoblems with several hundred DVs, such as the forward dynamic
perform equally well. As with any global optimizer, PSO utiliza-optimizations of jumping and walking performed with parallel
tion would be limited by the computational cost of function evaluSQP in[1-3].
ations given the large number required for a global search. One advantage of global algorithms such as PSO, GA, and SA

Our particle swarm implementation may also be applicable ts that they often do not require significant algorithm parameter
some large-scale biomechanical optimization problems. Outsitlming to perform well on difficult problems. The GA used[B)
the biomechanics aren@8,29,42-5), PSO has been used to(which is not freely availablerequired no tuning to perform well
solve problems on the order of 120 design varialp-51]. In  on all of these particular analytical test problems. The SA algo-

Table 3 Final cost function values and associated marker distance and joint parameter root-
mean-square (RMS) errors after 10,000 function evaluations performed by multiple unscaled
and scaled PSO, GA, SQP, and BFGS runs. See Fig. 4 for the corresponding convergence

histories.
RMS error
Marker Orientation Position

Optimizer Formulation Cost function distancegmm) parametersdeg parametergmm)
PSO Unscaled 70.4 5.49 4.85 2.40

Scaled 70.4 5.49 4.85 2.40
GA Unscaled 77.9 5.78 2.65 6.97

Scaled 74.0 5.64 3.76 4.01
SQP Unscaled 255 10.4 3.76 14.3

Scaled 121 7.21 3.02 9.43
BFGS Unscaled 355 12.3 21.4 27.5

Scaled 102 6.61 18.4 8.52
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ginson et al[53] recently developed a new parallel SA implemen-
tation and demonstrated near ideal parallel efficiency for up to 32
processors. In contrast, Koh et g84] reported poor SQP parallel
efficiency for up to 12 processors due to the sequential nature of
the line search portion of the algorithm.

The caveat for these parallel efficiency results is that the time
required per function evaluation was approximately constant and
1T Forward 1e-3 the computational nodes were homogeneous. As showWB3h
O Central 16-3 when function evaluations take different amounts of time, parallel

efficiency of our PSO algorithrtand any other synchronous par-
2% Forward 1e-6 allel algorithm, including GA, SA, SQP, and BF&®ill degrade
< Central 1e-6 with an increasing number of processors. Synchronization be-

tween individuals in the population or between individual gradient
I ) B PRIV BT PRV R calculations requires slave computational nodes that have com-
0% 10° 10* 10° 102 10" 10° pleted their function evaluations to sit idle until all nodes have
returned their results to the master node. Consequently, the slow-
est computational nod@vhether loaded by other users, perform-
ing the slowest function evaluation, or possessing the slowest pro-
the selected finite difference step size for one design variable. cessor in a heterogeneous environmenl dictate the overall
Forward and central differencing were evaluated using relative time for each parallel iteration. An asynchronous PSO implemen-
convergence tolerances of 10 2 and 107 for the nonlinear least tation with load balancing, where the global best-found position is
squares suboptimizations performed during a cost function updated continuously as each particle completes a function evalu-
evaluation [see Eqg. (20)]. ation, could address this limitation. However, the extent to which

convergence characteristics and scale independence would be af-
fected is not yet known.

) . ) . . To put the results of our study into the proper perspective, one
rithm in [5] required tuning of two parameters to improve algopmyst remember that optimization algorithm robustness can be in-
rithm robustness significantly on those problems. Our PSO algfyenced heavily by algorithm implementation details, and no
rithm (which is freely availablerequired tuning of one parametersingle optimization algorithm will work for all problems. For two
(wo, which was increased from 1.0 to 1.8 produce 100% suc- of the analytical test problensi, andHg with n=4), other stud-
cess on the two problems where it had significant failures. For (i have reported PSO results using formulations that did not in-
biomechanical test problem, our PSO algorithm required no tgryde dynamic inertia and velocity updating. Comparisons are dif-
ing, and only the population size of our GA algorithm requiregicyit given differences in the maximum number of function
tuning to improve convergence speed. Neither algorithm was S@fyajuations and number of particles, but in general, algorithm
sitive to the two sources of noise present in the problem—noigigygifications werénot surprisingly found to influence algorithm
added to the synthetic marker trajectories, and noise due tqghyergence characteristifs4—56. For our GA and SQP algo-
somewhat loose convergence tolerance in the Levenbeiginms, results for the analytical test problems were very different
Marquardt suboptimizations. Thus, for many global algorithfyom those obtained if6] using different GA and SQP implemen-
implementations, poor performance on a particular problem Cggions. With seven mutation and four crossover operators, the GA
be rectified by minor tuning of a small number of algorithmyigorithm used if5] was obviously much more complex than the
parameters. , . one used here. In contrast, both SQP algorithms were highly de-

In contrast, gradient-based algorithms such as SQP and BFzstoped commercial implementations. Poor performance by a
can require a significant amount of tuning even to begin to agradient-based algorithm can be difficult to correct even with de-
proach global optimizer results on some problems. For the biom§gn variable scaling and careful tuning of the FDSS. These find-
chanical test problem, our SQP and BFGS algorithms were highlygs indicate that specific algorithm implementations, rather than
tuned by scaling the design variables and determining the optim@neral classes of algorithms, must be evaluated to reach any

FDSS for each design variable separately. FDSS tuning was esggnclusions about algorithm robustness and performance on a par-
cially critical due to the two sources of noise noted above. Whegylar problem.

forward and central difference gradient results were compared for

one of the design variables using two different Levenbergs Conclusion
Marquardt relative convergence tolerandd®® and 109), a
“sweet spot” was found near a step size of4(Fig. 5. Outside
of that “sweet spot,” which was automatically identified and us
in generating our SQP and BFGS results, forward and cent
difference gradient results diverged quickly when the looser td
erance was used. Since most users of gradient-based optimizali
algorithms do not scale the design variables or tune the FDSS
each design variable separately, and many do not perform multi
runs, our SQP and BFGS results for the biomechanical test pr
lem represent best-case rather than typical results. For this parti

-
T

Gradient x 10*

o
T

Finite Difference Step Size

Fig. 5 Sensitivity of SQP and BFGS gradient calculations to

In summary, the PSO algorithm with dynamic inertia and ve-
e|8city updating provides another option for difficult biomechani-
g4l optimization problems with the added benefit of being scale
jpdependent. There are few algorithm-specific parameters to ad-

., and standard recommended settings work well for most prob-
Ns[60,89. The algorithm’s main drawback is the high cost in
fLms of function evaluations because of slow convergence in the
Bl_a| stages of the optimization, a common trait among global
gﬁarch algorithms. In biomechanical optimization problems, noise,

lar problem, an off-the-shelf global algorithm such as PSO or gRUltiple local minima, and design variables of different scale can

is preferable due to the significant reduction in effort required tgnit the reliability of gradient-based algorithms. The PSO algo-

obtain repeatable and reliable solutions. rlthm presenteql hereT prpvndes a simple-to-use off-the-shelf alter-
Another advantage of PSO and GA algorithms is the ease wiiitive for consideration in such cases.

which they can be paralleliz§®,33] and their resulting high par-

allel efficiency. For our PSO algorithm, Schutte ef 8B] recently Acknowledgment
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