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Bicycle Drive System Dynamics:
Theory and Experimental
Validation

Bicycle pedaling has been studied from both a motor control and an equipment setup and
design perspective. In both cases, although the dynamics of the bicycle drive system may
have an influence on the results, a thorough understanding of the dynamics has not been
developed. This study pursued three objectives related to developing such an understand-
ing. The first was to identify the limitations of the inertial/frictional drive system model
commonly used in the literature. The second was to investigate the advantages of an
inertial/frictional/compliant model. The final objective was to use these models to develop
a methodology for configuring a laboratory ergometer to emulate the drive system dy-
namics of road riding. Experimental data collected from the resulting road-riding emu-
lator and from a standard ergometer confirmed that the inertial/frictional model is ad-
equate for most studies of road-riding mechanics or pedaling coordination. However, the
compliant model was needed to reproduce the phase shift in crank angle variations
observed experimentally when emulating the high inertia of road riding. This finding may
be significant for equipment setup and design studies where crank kinematic variations

are important or for motor control studies where fine control issues are of interest.
[S0148-0731(00)02004-5]

Introduction

Researchers have studied bicycle pedaling to address equip-
ment setup and design problems and motor control issues. From
an equipment setup and design perspective, the ultimate goal is
usually to improve human performance during outdoor riding.
However, due to the difficulty of collecting data from a bicycle
and rider on the road, most experimental pedaling studies have
been performed in the laboratory using a mechanically braked
ergometer [1-3], an electronically braked ergometer [4—6], a bi-
cycle on roller cylinders [7-9], a Velodyne trainer [10-12] or a
bicycle on a treadmill [13—16]. Numerous computer simulation
studies of road riding have also been performed, for example, to
determine optimal bicycle configuration and rider position
[17,18], to design noncircular chainrings for improved pedaling
efficiency [19-21], or to design off-road bicycle suspension sys-
tems [22]. An explicit dynamic model of a bicycle drive system is
therefore desirable to assess how well various experimental situ-
ations mimic the dynamic loading of outdoor riding and to deter-
mine whether drive system models used in simulation studies of
road riding are appropriate to the goal of the study.

From a motor control perspective, pedaling provides the inves-
tigator with the unique opportunity to manipulate the external load
and study how the body responds. This approach requires that the
mechanical characteristics of the external load be well understood
so that changes in control strategy can be correlated with changes
in the load. Historically, most experimental studies of pedaling
coordination have manipulated the cadence [23—-25], the frictional
resistance [23,24,26], the cadence and frictional resistance simul-
taneously [5,6,8], or the bicycle gear ratio [8,11,27]. A few inves-
tigators have also manipulated the inertial resistance [28-30], but
in general, the amount of inertia used in the experimental appara-
tus is rarely mentioned. Thus, the implicit assumption is often
made that inertia, and therefore drive system dynamics, does not
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have an influence on pedaling coordination. A more through un-
derstanding of bicycle drive system dynamics is needed to assess
the reasonableness of this assumption.

This study focuses on three objectives related to developing a
better understanding of bicycle drive system dynamics. The first
objective is to examine the limitations of the noncompliant drive
system model commonly used (or implicitly assumed) in the ped-
aling literature. The second is to investigate the potential advan-
tages of a more complex compliant model. The final objective is
to develop a methodology, based on these models, for configuring
a laboratory pedaling ergometer to emulate the drive system dy-
namics of outdoor riding. Experimental data collected from the
resulting road-riding emulator and from a standard Monark ergo-
meter served to test the models and to highlight when consider-
ation of drive system dynamic effects may be important.

Methods

Noncompliant Model. A one degree-of-freedom inertial/
frictional model (henceforth called the ‘‘noncompliant model’’) is
the most common dynamic drive system model found in the lit-
erature [20,31-33]. The equation of motion for this model is

T =T~ Tyt 1

where

Igs = effective rotational inertia about the crank. axis due to
rigid bodies rotating about the crank axis (i.e., the chain-
rings, pedals, and crank arms) and about the flywheel or
rear wheel axis (e.g., the freewheel)

0, = angle of the crank measured with respect to top dead
center

T. = crank torque due to the pedal forces produced by both
legs

Tgy = effective resistance torque about the crank axis

There are two key assumptions inherent in this model. The first is
that the bicycle drive system is infinitely stiff. Consequently, if the
rear wheel were locked in place, no rotation of the crank arm
would occur if a driving force were applied to the pedals. The
second assumption is that the freewheel in the model cannot de-
couple from the flywheel or rear bicycle wheel, much like with a
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fixed-gear track bicycle. This assumption becomes invalid when-
ever the contact torque exerted by the freewheel on the flywheel
or rear bicycle wheel goes to zero, which occurs if T, becomes
less than about 0.5 N-m [34].

Compliant Model. A slightly more complex two degree-of-
freedom inertial/frictional/compliant model (henceforth called the
‘‘compliant model’’) can be obtained by eliminating the assump-
tion that the bicycle drive system is infinitely stiff. In this situa-
tion, the equations of motion are

[ICrk 0 Hél _[Tc]_[ Cer _CEff} 91]
0 Inel| 8] LO —Cer  Cer || 62
3 Kgie  — Kgge [01]_ 0 @
- K, Eff K Eff 02 TEff
where
Icy = rotational inertia about the crank axis due to rigid bodies

rotating about this axis (i.e., the chainrings, pedals, and
crank arms)

Iges = rotational inertia about the crank axis, as reflected
through the gearing, due to rigid bodies rotating about
the flywheel or rear wheel axis (e.g., the freewheel)

8, = angle of the reflected inertial load measured with respect
to top dead center
Cg = effective rotational damping about the crank axis
Kgi = effective rotational stiffness about the crank axis

and 0,, T., and Tg are as defined in Eq. (1). In this model, /g
is split into two components, Icy and Ig.¢, separated by a tor-
sional spring with stiffness Kgg. This spring accounts for all com-
pliances in the drive system (see Discussion), while the spring
deflection 6,— 6, is consistent with how Kgg was measured ex-
perimentally (see below). When Kgg goes to infinity, ¢y and Igs
respond as a single rigid body, and Eq. (2) reduces to Eq. (1) with
Tg=1Icnct Ires -

Dynamic Equivalence. These models were used to develop a
methodology for configuring a laboratory pedaling ergometer to
emulate the bicycle drive system dynamics of outdoor riding.
Starting with the simpler noncompliant model, the relationship
between the model parameters /g and T and the physical prop-
erties (e.g., masses, inertias, radii, and gear ratio) of a standard
ergometer or road bicycle can be determined from dynamics. A
schematic of a standard ergometer is shown in Fig. 1(a), and the
corresponding equation of motion can be shown to be

a

chainwheel
freewheel
flywheel
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b

bicycle frame
rider

front wheel
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chainwheel
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Fig. 1 Schematics of one degree-of-freedom bicycle drive sys-
tems: (a) Monark stationary bicycle ergometer; (b) twelve-
speed road bicycle

2 / Vol. 122, AUGUST 2000

{I+ (Rx IRy Iy + I} By =T, ~{(Rx/RY)RFZ) O
(Tt Ergometer

( Eff) Ergometer

Iy = combined rotational inertia of the chainring, pedals,
and crank arms about the crank axis
Iy,I; = rotational inertia of the ergometer freewheel and fly-
wheel, respectively, about their axes of rotation

Ryx/Ry = gear ratio, which is 52/14 (i.e., 3.7:1) for a standard
Monark ergometer
R; = radius of the ergometer flywheel
F; = frictional resistance force applied to the flywheel by

the band brake

Similarly, Fig. 1(b) presents a schematic of a road bicycle, with a
corresponding equation of motion

{Ie+(RpIRG) [RE(mg+mc+2mp+mp+mg)+(2Ip+15)1} b,

(Tg)Road
=Tc_{(RF/RG)RDFC} (4)
—

(Te)Road

where

mass of the bicycle frame, the rider, each

bicycle wheel, and the freewheel, respec-

tively

mass of the chainrings, crank arms, and ped-

als, collectively

I, = rotational inertia of each bicycle wheel
about its axis of rotation

Ir = combined rotational inertia of the chain-

rings, pedals, and crank arms about the

crank axis

mpg,mc,mp,mg =

I; = rotational inertia of the freewheel about its
axis of rotation
Rp = radius of each bicycle wheel
Rp/R; = gear ratio, which ranges from 42/28 (i.e.,
1.5:1) to 52/13 (i.e., 4:1) for many 12-speed
road bicycles
F. = total opposing force experienced by the rider

due to wind and rolling resistance and chain
and bearing friction

The drive system dynamics for a bicycle on roller cylinders can
also be expressed in the form of Eq. (1) [35]. Equations (3) and
(4) indicate that Tgg is a linear function and Igg a quadratic func-
tion of the selected gear ratio. For an infinitely stiff drive system,
Egs. (1), (3), and (4) suggest that a stationary ergometer could be
configured to match the dynamic response of a road bicycle by
setting (I Eff)Ergomeler= (1 Eff)Road and (TEff)Ergomclcr=(TEff)Road'
Drive system compliance introduces the additional requirements
that (K Eff)Ergometcr= (X Eff)Road and (CEff) Ergometer (CEff) Road *

This theory can be simplified by realizing that Igg and Tgg in
Eq. (4) ultimately depend on only two parameters: road-riding
cadence and gear ratio. The Igg expression only depends on bi-
cycle and rider physical properties (i.e., masses, inertias, radii, and
gear ratio). The Tgg expression depends on radii and F, which
can be estimated as a function of gear ratio and cadence from
information reported by Whitt and Wilson [36] (see below). Con-
sequently, substituting an expression for F. and the physical
properties of a nominal bicycle-rider situation (see [34] for de-
tails) into Eq. (4) produces the following simplified expressions
for road-riding I Eff and TEff:

Ig(kg-m?) ~3.456X 10~ 2+ 10.442¢>
Te(N-m)~2.125g,+ 1.379X 10~ %g> rpm? 5)
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where
g, = gear ratio, expressed as teeth in chainring divided by
teeth in freewheel

rpm = cadence in revolutions per minute

Because F is a quadratic function of g,, this simplified expres-
sion for Ty is a cubic rather than linear (i.e., as suggested by Eq.
(4)) function of g, . Since work rate is simply Tgs multiplied by
cadence, and since road-riding speed only depends on tire radius,
cadence, and gear ratio, we also have:

Work rate (W)=~2.225X10"" g, rpm+ 1.444X 1073 g rpm?
Speed(m/s)~3.591X 10 2g, rpm 6)

For constant speed pedaling through still air on a level grade, the
work rate relationship in Eq. (6) (if re-expressed as a function of
road-riding speed) is of the same form as that developed by Mar-
tin et al. [37]. However, their equation is more precise since it
accounts for a wider variety of frictional effects (e.g., road grade)
and was validated using experimental data collected during actual
road riding.

Equations (5) and (6) were used in the present study to estimate
ergometer-equivalent I and Tgg values for a typical tourist cy-
cling situation. Their dependence on only g, and rpm makes them
suitable for other studies seeking to emulate various road-riding
scenarios. The I expression assumes a 50th percentile U.S. male
rider (77.8 kg) pedaling a Trek 560 road bicycle (12.3 kg). For the
standard gearing available on many 12-speed bicycles, I ranges
from about 24 kg-m? (a 42/28 gear ratio) to around 167 kg-m? (a
52/13 gear ratio). The Ty expression is derived from information
for wind drag, rolling resistance, and chain and bearing friction
[36] and assumes pedaling through still air. The wind resistance
calculation assumes a tourist cyclist with a drag coefficient of 1.0
and frontal area of 0.5 m?. The rolling resistance calculation uti-
lizes a tire pressure of 0.5 MPa (75 psi). The bicycle transmission
was assumed to be 95 percent efficient.

Experiments. Four experimental cases, which were combina-
tions of two Igy and two Ty values (see Table 1), were used to
test the models. The larger Iy value of 101.6kg-m? was repre-
sentative of a 50th percentile U.S. male rider pedaling a 12-speed
road bicycle in a 52/17 gear ratio. This high inertia was achieved
by connecting a single ergometer flywheel to the crank through
three-stage gearing with an overall gear ratio of 16.4:1 (Fig. 2(a)).
The resulting inertia was slightly greater than the desired
97.7 kg-m? (substitute 52/17 into Eq. (5)) due to limited gear ratio
resolution. The smaller g value of 5.2 kg-m? was representative
of a standard Monark ergometer. This inertia, which was included
for comparison purposes, was achieved by connecting a separate
flywheel to the crank through single-stage gearing using the stan-
dard Monark gear ratio of 3.7:1 (Fig. 2(b)). The two Tgg values
corresponded to two recreational road-riding cadences in the
specified gear ratio (see Eq. (5)). The lower cadence of 60 rpm
corresponds to a Tgg value of 20.7 N-m, a road-riding work rate
of 130 W, and a road-riding speed of 6.6 m/s; the higher cadence
of 75 rpm to a Tgg value of 28.7 N-m, a work rate of 225 W, and
a speed of 8.2 m/s (see Eq. (6)). For all four cases, Cggs wWas
assumed to be small, and Ky was adjusted to be about
3000 N-m/rad, close to that of a road bicycle in a 52/17 gear ratio
(see Discussion).

Table 1 Summary of the four experimental pedaling
conditions
Iy Tey Kpy Cadence  Work rate
Emulated Pedaling Situation (kg:m?) (N-m) (N-m/rad) (rpm) (Watts)
Road bicycle in 52/17 gear ratio 101.6 207 3000 60 130
Monark ergometer 52 207 3000 60 130
Road bicycle in 52/17 gear ratio 101.6 287 3000 75 225
Monark ergometer 52 287 3000 75 225
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Fig.2 Pedaling apparatus configurations to achieve two effec-
tive drive system inertias: (a) high-inertia configuration to emu-
late a 12-speed road bicycle in a 52/17 gear ratio with a 50th
percentile U.S. male rider. The translational inertia of the rider
is accounted for in the rotational inertia of the experimental
drive system. (b) Low inertia configuration to emulate a stan-
dard Monark 868 ergometer.

Details of the experimental data collection have been reported
previously [28,34]. Briefly, ten recreational male cyclists gave
informed consent and performed all four cases (one trial per case)
during a single session. To study the frequency response of both
drive systems, we had one additional subject pedal over a range of
cadences from 20 and 100 rpm. The protocol for the experiments
was approved according to the relevant laws and regulations of
Stanford University. Subject position emulated road riding by us-
ing a seat tube angle of 73 deg, a crank arm length of 0.170 m, a
standard road bicycle seat and handlebars, and cleated cycling
shoes with toe clips. Cadence feedback was provided by a cycle
computer mounted on the handlebars. Compressive and shear
forces applied by the subject to the surface of the right and left
pedals were measured using two pedal dynamometers [38], while
crank arm orientation with respect to the seat tube and pedal ori-
entation with respect to each crank arm were measured using ro-
tary optical encoders. A sampling frequency of 1000 Hz was used
for all data.

To provide data for model evaluation, we calculated the crank
torque and the crank angle residual (defined below) from mea-
sured quantities. The crank torque from both legs was computed
from the known crank arm length and the right and left pedal
forces perpendicular to the crank arm. The crank angle residual,
defined as the variation in crank angle from a linear function of
time, was calculated from the relationship 6,= 6.~ (360/¢/)¢,
where 6, is the crank angle, ¢ is the time from the start of the
cycle, and #; is the final time of the cycle. The crank angle was
defined to be zero at top dead center, which corresponds to the
start of the cycle. One representative data set was created for each
of the four experimental cases by averaging from each subject the
ten consecutive cycles whose average cadence was closest to the
specified cadence.

Fourier analysis was used to eliminate high-frequency noise
from the averaged periodic data [39]. Crank torque curves were
smoothed using ten harmonics, capturing 99 percent of the signal
power in all cases. Crank angle residual curves were smoothed
using four harmonics, which captured between 72 and 88 percent
of the signal power in all cases. While more harmonics captured
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more of the signal power, unrealistic estimates of crank angular
velocity and acceleration then resulted. Furthermore, the magni-
tude of the residual curves was quite small, with the root-mean-
square (rms) error between a smoothed and unsmoothed curve
being less than 0.03 deg.

Analyses. Two different approaches were used to evaluate the
ability of the models to reproduce the experimental data. The first
approach was to perform a dynamic simulation for each of the
four experimental cases. To fine-tune the simulations, we used a
parameter optimization approach [40] to adjust the crank torque
and initial condition inputs as little as possible to reproduce the
observed crank angle residual output. The minor crank torque
adjustment accounts for the =4 N-m of variability present in the
averaged data. The initial condition change was primarily in the
compliant model’s torsional spring deflection, which was not
measured experimentally. The second approach was to compute
bode frequency response plots (gain and phase) for the experi-
ments and the models, where the crank angle residual was the
output and the crank torque the input. Since two cycles of crank
torque occur for each crank revolution, a conversion factor of
15/ was required to convert frequency from rad/s to rpm. For the
experiments, the crank angle residual and crank torque were ap-
proximated from the dominant second harmonic, and gain was
computed by dividing the output magnitude by the input magni-
tude and taking 20 log,, of the result. For the models, gain and
phase were computed from the appropriate transfer function (see
appendix for details) using the ‘‘bode’’ command of MATLAB®.
To improve the match between the compliant model and the ex-
periments, we made small adjustments to Igg, Kgg, and Cgg
using a MATLAB® nonlinear least squares routine. A discussion
of the transition frequency w, appearing in the frequency response
plots can be found in the appendix.

Results

The noncompliant drive system model was limited in its ability
to reproduce the experimental results. For emulated road riding,
the simulated crank angle residual from this model showed large
errors relative to the experiments (0.22 deg rms error at the low
cadence and 0.41 deg rms error at the high one), in part due to an
inversion in the phasing (Figs. 3(a,b), compare solid lines and
dotted lines). While the model was able to reproduce the phasing
of the experiments for emulated ergometer pedaling, the gain
agreement was still better at the lower cadence (0.12 deg versus

~a
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----- Non-compliant model

Crank torque (N-m)
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Crank angle residual (deg)
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Fig. 3 Comparison of experimental and simulated trajectories
for emulated road riding: (a) low cadence/work rate combina-
tion of 60 rpm/120 W: (b) high cadence/work rate combination
of 75 rpm/225 W; Crank torque input is on the top, and variation
in crank angle (i.e., “residual”) output is on the bottom. Only
the compliant model tracked the experimental crank torque and
crank angle residual trajectories simultaneously.
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Fig. 4 Comparison of experimental and simulated trajectories
for standard ergometer pedaling: (a) low cadence/work rate
combination of 60 rpm/120 W; (b) high cadence/work rate com-
bination of 75 rpm/225 W. Crank torque input is on the top, and
variation in crank angle (i.e., “‘residual’’) output is on the bot-
tom. Both models tracked the experimental crank torque and
crank angle residual trajectories reasonably well.

0.22 deg rms error; Figs. 4(a,b), compare solid lines and dotted
lines). These results can be explained by the frequency response
plots, which showed that the model was unable to reproduce the
phase shift observed experimentally in both drive systems. Con-
sequently, the model tracked the experimental gain and phase re-
sults only at cadences below the transition frequency w, (Figs.
5(a,b), compare triangles and dotted lines). These discrepancies
are probably unrelated to the hard-coupled freewheel assumption,
since the crank torque in all experiments remained positive and
greater than 5 N-m.

In contrast, the compliant model exhibited none of these limi-
tations, suggesting that drive system compliance was the primary
missing element. This model was able to reproduce the amplitude
(to within 0.05 deg rms error) and phasing of the experimental
crank angle residual for both emulated road riding (Figs. 3(a,b),
compare solid lines and dashed lines) and emulated ergometer
pedaling (Figs. 4(a,b), compare solid lines and dashed lines). In
addition, it was able to reproduce the gain and phase transitions

P o D
A Experiment
— — Compllant model 3
g | - Non-compliant model I NG
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! 77
W 7
100 . 100 L e
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) } ,
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.200 I L —aaaad 200 Py ’1.1
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Cadence (rpm)

Fig. 5 Comparison of experimental and simulated bode fre-
quency response: (a) emulated road riding; (b) standard ergo-
meter pedaling. Gain is on the top, and phase is on the bottom.
The compliant model tracked the experimental frequency re-
sponse extremely well, while the noncompliant model tracked it
only below the frequency w, defined by the compliant model’s
transfer function zero.
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observed in the frequency response experiments for both drive
systems (Figs. 5(a,b), compare triangles and dashed lines). Thus,
the compliant model could reproduce the experimental data at all
cadences above and below the transition frequency. Note that in
all optimizations with both models, the rms change in crank
torque was never greater than 1 N-m.

Finally, due to the significantly larger drive system inertia
achieved for emulated road riding, the experimental results for
this situation exhibited obvious differences from those of emu-
lated ergometer pedaling. For the same cadence and effective re-
sistance torque, the phasing of the crank angle residual was oppo-
site in the two drive systems, contributing to the large overall
differences in the residual curves (0.63 deg rms difference at the
low cadence and 0.80 deg at the high one; compare Fig. 3(a) with
Fig. 4(a) and Fig. 3(b) with Fig. 4(b), solid lines). Although the
shapes of the gain and phase frequency response curves were
similar for the two situations, the transition frequency w, was
much lower for emulated road riding than for emulated ergometer
pedaling (25 rpm versus 105 rpm; compare Figs. 5(a) and 5(b),
triangles).

Discussion

This study pursued three objectives related to the understanding
bicycle drive system dynamics. The motivation for pursuing these
objectives was to determine under what conditions the experimen-
tal and computer modeling approaches found in the literature are
appropriate for studying road riding mechanics or motor control
issues.

An important finding of this study is that though somewhat
limited in its capabilities, the commonly used noncompliant drive
system model appears to be fully adequate for many pedaling
investigations. Regardless of how much drive system inertia was
used in the experimental apparatus, the crank angle residual was
small in all cases (at most about *1 deg), suggesting that the
additional complexity required to model drive system compliance
may not be worth the effort. However, the hard-coupled freewheel
assumption limits use of the model to situations where coasting or
extremely ‘‘choppy’’ pedaling does not occur. Thus, the noncom-
pliant drive system model appears to be appropriate for most stud-
ies of road-riding mechanics or pedaling coordination.

Despite this statement, there may still be situations where the
extra fidelity provided by the compliant drive system model is
important. For equipment setup and design problems, this extra
fidelity may be necessary in situations where variations in the
crank kinematics are important. One such situation might be the
design of noncircular chainrings, where the goal is to create a
variable crank angular velocity profile to improve pedaling effi-
ciency [19-21]. In this situation, the crank angular velocity varia-
tions would be much larger than those encountered with the cir-
cular chainring used in our study. A noncircular chainring
designed under the assumption of an infinitely stiff drive system
would not take into account the phase shift in crank kinematics.
As a result, the chainring shape as well as the orientation of the
major and minor axes could be affected. Another area where
crank kinematic variations may have an influence is the design of
off-road bicycle suspension systems. The variable chainstay
length in such suspensions may reduce the effective stiffness of
the drive system, thereby lowering the transition frequency and
causing a phase lag in the suspension deflections even at ex-
tremely low cadences. Such a lag was observed by Wang and Hull
[22].

A more accurate drive system model may also be useful for
studying certain motor control issues. For example, one could
study fine coordination of pedaling by varying Igg and Kgg.
Fregly et al. [28] found that only the net ankle muscle joint torque
exhibited statistically significant changes when the ergometer
drive system inertia was increased 20-fold. Since these changes
could not be explained by differences in work rate or cadence,
Fregly and co-authors hypothesized that they were due to fine
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motor control adjustments of the ankle muscles in response to the
altered drive system dynamics. A detailed analysis of changes in
muscle EMG activity would be required to investigate this possi-
bility further.

A valuable feature of the compliant model is that it can be used
to predict when the noncompliant model is adequate, even in situ-
ations where crank kinematic variations or fine motor control is-
sues are of interest. This is possible because the transfer function
of the compliant model can be used to derive the following math-
ematical expression for the transition frequency w, (see appendix

for derivation):
. Kgg 15
w, (in rpm)~ \/ EX? )

Our results suggest that the noncompliant model will provide a
good representation of the drive system dynamics as long as the
selected cadence is well below this frequency. How far below
depends on the amount of damping in the drive system, which can
be estimated by tuning Cgy in the compliant model’s transfer
function (see appendix) to match the frequency response of the
experimental drive system.

The dynamic equivalence methodology derived from these
drive system models contains several important assumptions,
which should be considered. One important assumption was that
the compliant model provided an adequate representation of a
road bicycle drive system. We cannot claim with certainty that our
road-riding emulator reproduced the drive system dynamics of a
road bicycle, since we did not collect comparable data during
actual road riding. Without such data, we can only state with
certainty that the methodology is self-consistent, since the com-
pliant model was able to reproduce all of our experimental results.
The strength of this statement should not be minimized, however,
since we could not make it based on the noncompliant model.
This self-consistency between the compliant model and the ex-
perimental results therefore suggests that the road-riding emulator
provided a reasonable representation of the actual situation.

Two assumptions related to Igg for road riding were inherent in
the methodology. The first was that the rotational inertia of the
rider’s limbs does not contribute to the effective drive system
inertia. Since the majority of road-riding Ig; comes from the
translational inertia of the bicycle and rider, this simplifying as-
sumption is not expected to have a significant influence on the
calculated Igg value. The second assumption was that the rota-
tional inertia Iy of the flywheel was known precisely. Because Iy
is multiplied by the gear ratio squared in Eq. (3), use of a large
ergometer gear ratio to emulate road riding makes Igg sensitive to
errors in Iy . Our frequency response results suggest that our ini-
tial estimate of Iy, was probably about 0.02 kg-m? (or approxi-
mately 5 percent) too low. Consequently, Igg for our road-riding
emulator may have been 5kg-m? (or 5 percent) larger than
calculated.

An important assumption related to Tgg was that the specified
values could be set accurately on the road-riding emulator. When
a large ergometer gear ratio is used, setting Tgg accurately be-
comes difficult for two reasons. First, Tg; becomes much more
sensitive to errors in the flywheel friction setting (review Eq. (3)),
since a smaller amount of belt friction is required to achieve the
same value of Tgg. Second, flywheel wind friction effects be-
come important, since the flywheel angular speed is extremely
high even for moderate cadences. To address these issues, we
geared a rotary potentiometer to the band brake pendulum of the
flywheel, thereby improving the resolution with which the band
brake friction could be measured. Output from the potentiometer
was calibrated with Tg using bilateral pedal force measurements.
In this way, the resulting calibration curves accounted for not only
flywheel belt friction, but also bearing friction, chain friction, fly-
wheel wind friction, and any other frictional effects experienced
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Table 2 Estimated drive system inertia values for common
laboratory pedaling situations relative to road riding. lgz min
assume a bicycle gear ratio of 42/28, while /g4 max assumes a
gear ratio of 52/13. The gear ratio of a standard Monark ergom-
eter is fixed at 52/14.

Pedaling Situation (kgm?)  (kgm?)
Monark ergometer 5.2 52
Bicycle on rollers 20 13.9
Velodyne trainer 16.0 113.7
Road bicycle 235 167.1

by the rider at the crank. Statistical analysis of the average experi-
mental crank torque verified the accuracy of the calibration curves
[28].

A final assumption was that the torsional spring stiffness Kgg
could be set to match that of a road bicycle in the specified gear
ratio. To determine Kgg for a road bicycle, we mounted a Trek
560 racing bicycle on a turbo trainer stand, locked the rear wheel,
and measured the amount of crank deflection due to a range of
applied crank torques. Crank deflection was measured using a
video-based motion analysis system, while crank torque was de-
termined from a single pedal force transducer. For a 52/18 gear
ratio, we found Kgg to be approximately 3000 N-m/rad (r?
>0.979 for the two trials). To attempt to model this compliance,
we investigated whether chain compliance accounts for the major-
ity of 1/Kgg. Based on a theoretical relationship for how chain
stretch translates into rotation about the crank axis (see [34] for
details), we calculated that Kg due to chain compliance alone
was approximately 8650 N-m/rad, or about a third of the effective
compliance. The remaining compliance comes from a variety of
sources that are difficult to model, such as bending of the sprock-
ets, bending of the axles, and flexing of the frame. Nonetheless,
this relationship indicated that K could be increased by using a
larger front sprocket, a shorter tensioned length of chain, or a
chain with greater stiffness per link. In the present study, this
information was used to select bicycle chains with different stiff-
ness properties so as to achieve the desired Ky value on the
road-riding emulator. Stiffness per link for twelve different chain
models as measured with an MTS machine is reported in Fregly
[34].

An important benefit of the dynamic equivalence methodology
is that it provides a theoretical basis for assessing how various
laboratory pedaling situations compare to road riding. Of the three
parameters in the compliant model, the effective drive system
inertia Igg is the most likely to vary widely. Table 2 presents our
estimates of Iy for several typical laboratory pedaling situations
relative to road riding. Only one common apparatus, the Velodyne
trainer (Collinear Research Corporation, Irvine, CA), comes close
to matching this aspect of road riding, producing 68 percent of the
inertia of road riding in the same gear ratio [41]. Similar to our
road-riding emulator, the Velodyne achieves its high inertia me-
chanically by gearing up a flywheel. While electronically braked
ergometers are more sophisticated than their mechanically braked
counterparts, their control algorithms only affect Tgg by applying
a braking force to emulate wind resistance, rolling resistance,
chain and bearing friction, and gravitational resistance. Emulating
Igg electronically rather than mechanically would require accel-
eration feedback and a servo motor rather than just a braking
device.

As an example of this methodology, consider how dynamic
equivalence would be used to evaluate a typical laboratory pedal-
ing scenario. We will assume that this hypothetical experiment is
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performed on a Monark ergometer (Igg=5.2 kg-m?) using a ca-
dence of 90 rpm and a work rate of 200 W (Tgz=21.2N-m),
conditions similar to many pedaling experiments found in the lit-
erature. From the Igg expression in Eq. (5), a road bicycle gear
ratio of 26/37 would be required to emulate the low inertia of
5.2kg-m% With the gear ratio specified to meet the inertia re-
quirement, the T expression in Eq. (6) yields a corresponding
resistance torque of only 1.9 N-m. To increase Tgg to the required
21.2N-m, the rider would also have to pedal against a 14.0 m/s
head wind. Thus, many ergometer pedaling experiments corre-
spond to road riding in an extremely low gear ratio against an
extremely high head wind.

In conclusion, we have demonstrated the limitations of the non-
compliant drive system model commonly used in the literature,
proposed a compliant model to overcome these limitations, and
developed a methodology based on these models for configuring a
laboratory pedaling ergometer to emulate the drive system dynam-
ics of any specified road riding situation. While our findings may
not be significant for many pedaling situations, researchers should
be aware of when inertial and compliance effects may influence
experimental or computer modeling results. This is most likely to
be the case in equipment setup and design studies where crank
kinematic variations are important and in motor control studies
where fine control issues are of interest.
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Appendix

Both dynamic drive system models can be evaluated over a
wide range of cadences by plotting their bode frequency response
curves from their respective transfer functions, where the output is
the periodic crank angle 6, and the input is the periodic crank
torque T, .

For the noncompliant model, the transfer function between 6,
and T, can be found analytically by taking the Laplace transform
of Eq. (1) and performing some algebraic manipulations:

Gy( )——0‘(s) ———;1 Al
BTTS) T @b

This transfer function possesses no zeros and two poles at the
s-plane origin, indicating that the only natural frequency is zero.
Consequently, only rigid body motion is possible, and the output
and input will always be out of phase for harmonic excitation (see
Fig. 5, dotted lines).

For the compliant model, the transfer function between 6, and
T. can be found from Eq. (2) by following a similar process:

0,(s)
Gy(s)= ——
2TTL(s)
_ Igess®+ Cygys + Kigr
52 cad res” + (Icr+ Tref) Cres + (Ienct Trer) K esr]

(42)

The characteristic frequencies can then be determined by setting
Cgsr to zero. From the poles, this yields natural frequencies
at zero (ie, the system is semidefinite) and o,
= (U F Iret) Kt /T crd rep)» While from the zeros, a frequency
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at w,= JKgg/Trer- Since Ige>Icy~0, the one nonzero natural
frequency w, will always be much higher than w,, so that the
main effects can be seen by setting Iy to zero:

0,(s) 1 s*+a?
T(s) Kgg 5

For harmonic excitation, Eq. (A3) indicates that the output and
input will be out of phase below w, and in phase above it, while
the gain will be minimum at w, (see Fig. 5, dashed lines).

Gy(s)=

(43)
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