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Abstract—Seated ergometer pedaling is a motor task ideal for studying basic mechanisms of human bipedal
coordination because, in contrast to standing and walking, fewer degrees of freedom are being controlled and
upright balance is not a factor. As a step toward understanding how individual muscles coordinate pedaling, we
investigated how individual net muscle joint torques and non-muscular (e.g. centripetal, coriolis, and gravity)
forces of the lower limbs generate, absorb, and transfer mechanical energy in order to propel the crank and recover
the limb. This was accomplished using a mechanical power analysis derived entirely from the closed-form
state—space dynamical equations of a two-legged pedaling model that accounted for both the limb segmental and
crank load dynamics.

Based on a pedaling simulation that reproduced experimental kinematic and kinetic trajectories, we found that
the net ankle and hip extensor joint torques function ‘synergistically’ to deliver energy to the crank during the
downstroke. The net hip extensor joint torque generates energy to the limb, while the net ankle extensor joint
torque transfers this energy from the limb to the crank. In contrast, net knee extensor and flexor joint torques
function ‘independently’ by generating energy to the crank through the top and bottom of the stroke, respectively.
The net ankle joint torque transfers and the net knee joint torque generates energy to the crank by contributing to
the driving component of the pedal reaction force. During the upstroke, net ankle extensor joint torque transfers
energy from the crank to the limb to restore the potential energy of the limb. In both halves of the crank cycle,

gravity forces augment the crank-limb energy transfer performed by the net ankle extensor joint torque.
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INTRODUCTION

Stationary ergometer pedaling is a task requiring intra-
and inter-limb coordination to propel the crank through
a constrained path. This constraint reduces the mechan-
ical degrees of freedom being controlled, making pedal-
ing coordination more amenable to investigation than,
say, walking coordination. Furthermore, when subjects
are seated while pedaling, balance is not a factor in
accomplishing the task, as in walking. One additional
benefit is that the external frictional and inertial load of
the ergometer can be manipulated to study the corres-
ponding changes in muscular function (e.g. Ericson et al.,
1986). Ergometer pedaling is, therefore, a motor task
ideal for studying basic mechanisms of bipedal coordina-
tion.

Pedaling requires that the mechanical energy pro-
duced by the muscles be transferred to the crank to
overcome the frictional and inertial load of the er-
gometer. As a first step toward understanding how
muscles accomplish this, the mechanical power de-
veloped by each net muscle joint torque of the leg has
been computed by multiplying each joint torque (i.e. as
obtained from an inverse dynamics analysis) with the
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corresponding joint angular velocity (e.g. Ericson, 1988;
Ericson et al., 1986). By computing the joint powers
associated with different frictional loads, Ericson (1988)
found that the net knee and hip extensor joint torques
produce substantial mechanical energy to propel the
crank. However, the biomechanical mechanism by which
this mechanical energy flows through the limb segments
to the crank was not elucidated.

For this reason, a free-body power analysis of the
entire limb has been used to analyze mechanical energy
flow during pedaling (Ingen Schenau et al, 1990).
This approach utilizes a free-body power equation (e.g.
Robertson and Winter, 1980) which computes the energy
flow through a generic segment due to the net muscle
joint torques and the intersegmental reaction forces act-
ing on the segment. By summing the power equations for
the foot, shank, and thigh segments, a single power equa-
tion for the entire limb is obtained which contains no
intersegmental reaction forces except those acting at the
two ends of the kinematic chain (Aleshinsky, 1986; Ingen
Schenau and Cavanagh, 1990). In the case of pedaling,
this equation shows how the summed power produced by
the net muscle joint torques is decomposed into the
power (i.e. rate of change of energy) contributed to the
crank through the pedal reaction force and the rate of
change of mechanical energy of the limb (Ingen Schenau
et al., 1990). Even so, because a free-body power analysis
cannot fully decompose the power contributed to the
crank and limb, it does not reveal how net muscle joint
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torques act in synergy among themselves and with non-
muscular (e.g. centripetal, coriolis, and gravity) forces to
deliver energy to the crank.

A state-space power analysis permits the full de-
composition of crank and limb mechanical power into
muscular (e.g. net muscle joint torques) and non-muscu-
lar (i.e. centripetal, coriolis, gravity, and friction) compo-
nents. This is because a state-space approach accounts
for how each force and torque influences the dynamics of
each modeled segment, even those to which it is not
applied directly (e.g. the crank; Fregly and Zajac, 1989).
To implement this approach, closed-form state—space
dynamical equations, such as those used to study and
design multi-input multi-output control systems (Frank-
lin et al., 1986), must be derived for the specific task under
investigation. These equations have been used previously
to define how each muscle force acts to accelerate each
modeled segment (Hatze, 1987; Zajac and Gordon, 1989).
Such knowledge can be pivotal for understanding CNS
control strategies (Kuo and Zajac, 1993a), muscle coord-
ination of multi-joint motor tasks (Hatze, 1976, 1980;
Pandy and Zajac, 1991; Zajac, 1993, Zajac and Levine,
1979), and how muscle strength may limit movement
(Kuo and Zajac, 1993b).

This paper uses a state—space power analysis to deter-
mine how net muscle joint torques and non-muscular
forces cause mechanical energy to flow into or out of each
modeled segment, including the crank. Analysis of how
mechanical energy is generated, absorbed, and trans-
ferred reveals whether net muscle joint torques function
‘synergistically’ or ‘independently’ to propel the crank,
which is an important step toward understanding the
coordination of individual muscles during pedaling.

THEORY AND METHODOLOGY

Dynamical pedaling model

We developed a three degree-of-freedom, two-legged
dynamical model of stationary ergometry pedaling
(Fig. 1), consistent with Ingen Schenau and Cavahagh’s
(1990) recommendation that the entire system of athlete
and equipment be considered in biomechanical power
analyses. Each leg was considered to be part of a planar
five-bar linkage, where the crank angle 6, and the two
foot segment angles 0, and 65 with respect to an inertial
reference frame were selected to be the three generalized
coordinates. Although only one leg needs to be modeled
to calculate net muscle joint torques via an inverse dy-
namics approach, both legs and their interaction with the
crank (i.e. the crank load dynamics) must be modeled in
order to decompose the mechanical power of the crank.
The crank load dynamics were modeled using an ‘effec-
tive’ frictional and inertial load (Fregly, 1993).

The computer program Autolev (Levinson and Kane,
1990; Schaechter and Levinson, 1988) based on Kane’s
method (Kane and Levinson, 1985) was used to derive
the closed-form state—space dynamical equations. Due to
their excessive length and complexity, only their form will
be presented here. The Autolev input file used to derive

Fig. 1. Three degree-of-freedom dynamical model of seated,
two-legged pedaling of a stationary bicycle ergometer. The
crank angle 0, and the two foot segment angles 6, and 0, with
respect to an inertial reference frame are the three generalized
coordinates. All joints are assumed to be frictionless and re-
volute, and both hips are assumed to remain stationary. The
total load that the cyclist experiences at the crank due to all
ergometer components is modeled by an ‘effective’ inertia and an
‘effective’ friction.

the equations and the energy conservation method used
for checking the equations are, however, available
(Fregly, 1993).

Contributions to the angular acceleration of the crank
and limb segments

The closed-form state—space dynamical equations for
the above model define how each net muscle joint torque
and non-muscular force contributes to the angular accel-
eration of the crank and limb segments (Fregly and
Zajac, 1989). Briefly, if each generalized speed is defined
as the first time derivative of the corresponding general-
ized coordinate, then the three degree-of-freedom dy-
namical equations can be expressed in matrix form as

M(@©)d = T(@®) + V(6,0) + G(6) + F, (1)

where

0 =[60,0,0; ]T

M(@@) = 3x3 mass matrix, which depends on the con-
figuration and inertial properties of the crank
and body segmental linkage

T@) =3x1 column matrix due to net muscle joint

. torques
V(0,0) = 3x1 column matrix due to angular velocity
of the segments (i.e. centripetal and coriolis

forces)
G(@) = 3x1 column matrix due to gravity forces
F = 3 x 1 column matrix due to frictional forces.

Because F in this model is calculated from the average
power over one cycle, as determined from experimental
pedal force measurements, it accounts for not only fly-
wheel belt friction but also chain friction, bearing friction,
flywheel wind friction, and any other frictional effects
experienced by the cyclist at the crank. If hip motion were



A state-space analysis 83

modeled, we could add four degrees-of-freedom (i.e. two
translations for each hip joint) and two forces (i.e. one
reaction force vector for each hip joint) to the model to
account for the upper body and trunk dynamics. The
resulting seven degree-of-freedom dynamical equations
would have the same form as equation (1) except for an
additional column matrix on the right-hand side due to
the hip joint reaction forces.

Because M(8) is non-singular for realistic limb trajecto-
ries (e.g. no knee hyperextension), both sides of equation
(1) can be premultiplied by M~ !(0) to determine how
each muscle, velocity-dependent, gravity, and friction
force and/or torque contributes to the total angular ac-
celeration of the crank and the two foot segments:

= kM‘l(O)T(O)I + M~1(0)V(0,6)

6 M::fscle §Ve\l(ocily
+ MTOGE) + MHOF . Q)
@Gravity ﬁFr}gtion

Since the shank and thigh kinematics depend on the
crank and foot kinematics (i.e. as found by differentiation
of the five-bar linkage configuration constraint equa-
tions), the total angular acceleration of the two shank
and two thigh segments can also be decomposed into
contributions from muscle, velocity-dependent, gravity,
and friction terms. Thus, given a cycling trajectory ()
and O(r) and the net muscle joint torques which produce
it, we can compute how any torque or force in the model
contributes to the angular acceleration of any modeled
segment (e.g. the crank).

M~ 1() defines, therefore, the instantaneous linear re-
lationship between each net muscle joint torque and the
angular acceleration of each segment. Because M~ 1(0) is
non-diagonal, a net muscle joint torque generally con-
tributes to the angular acceleration of all segments, even
those on which it does not act directly (often referred to
as ‘dynamic coupling’; Zajac and Gordon, 1989). Pedal-
ing illustrates this fact well since muscle joint torques are
not applied directly to the crank, yet they are essential for
accelerating the crank (i.e. via their contribution to the
pedal reaction forces).

Contributions to the mechanical power of the crank
and limb segments

A state—space approach can also be used to define how
each muscular and non-muscular component contributes
to the mechanical power of the crank and the body
segments. Consider a dynamical system described by
equation (1), where each generalized speed is defined as
the first time derivative of the corresponding generalized
coordinate (the most common case) and where no pre-
scribed motions as a function of time are considered to
occur. Then regardless of whether the system is holo-

nomic (i.e. no motion constraints) or non-holonomic (i.e.

motion constraints, the case here), the expressions ap-
pearing in equation (1) are related to KE, the system
kinetic energy, by (Kane and Levinson, 1985)

dKE . N
e [(M(8)8 — v(6,6)1"0 3)
and to PE, a system potential energy, by (Kane and
Levinson, 1985)
dPE .
— = — G(0)70, 4
= © @
where — M(0)8 + V (0, 8) are the generalized inertia for-
ces, G(0) are the generalized active forces assuming no
applied forces and torques other than gravity, 0 are the
generalized speeds, and the superscript T indicates
matrix transposition. Based on equations (3) and (4), the
mechanical power P of the entire system, defined as the
first time derivative of its total mechanical energy
E =KE + PE, is:

P =[M(@)d — V(©6,0) — G©)]"0. (5)

Furthermore, the mechanical power P; of any individual
segment i can be found from equation (5) by setting all
masses and inertias to zero except the mass and inertia of
segment i

P; = [M;(®)8 — V,(8,0) — G,(8)]"6, ©)

where the subscript i on the right-hand side of equation
(6) indicates that only the mass and/or inertia of segment
i appear in these matrices. A positive (negative) value of
P; means that mechanical energy is flowing into (out of)
the segment.

The fact that 8 appears linearly in equation (6) and can
be decomposed into muscular and non-muscular compo-
nents via equation (2) means that the total mechanical
power P; of any modeled segment i can be partitioned
into contributions from each muscle, velocity-dependent,
gravity, and friction force and/or torque:

Pi - [Mi(e)ﬁMuscle]Té + [Mi(0)6Velocily _ V,-(O, 9)]T0

fuscl el
Muscle Velocity
P i P i

+ [Mi(@)8° — G,(6)]"0

Gr.
raity
P;

+ L[ Mi(o)ﬁFriction]Té p (7)

v
PiFriclion

Thus, given a cycling trajectory 0(t) and 0(r) and the net
muscle joint torques which produce it, equation (7) de-
fines the explicit mathematical relationship between any
torque or force in the model and the mechanical power it
contributes (positive or negative) to any modeled seg-
ment, including the crank. Since the total mechanical
power of a segment can be expressed in terms of the net
joint torques and the intersegmental forces acting on
this segment (consider a free-body diagram), the
state—space approach (i.e. equation (7)) implicitly ac-
counts for the intersegmental reaction forces by decom-
posing them (see Discussion).

Because power is a scalar quantity, individual segment
powers can be summed to determine the power a net
muscle joint torque contributes to any group of segments
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(Fregly and Zajac, 1989), such as: (i) the crank (i.e. the
flywheel, freewheel, chainwheel, crank arms, and pedals);
(i) the limb segments (ie. the foot, shank, and thigh
segments of both legs); and (iii) all the segments (i.e. the
crank and limb segments together, yielding the net posi-
tive or negative power produced by the joint torque).
Thus, if there are n segments in the model, with segments
1 through m associated with the crank and segments
m + 1 through n associated with the limbs, then

YPh=YP + Y Pi,
i=1 i=1 i=m+1 (8)
PNet PCrank PLimbs

where each P; is computed from equation (7) by assuming
all forces and torques are zero except the net muscle joint
torque whose mechanical power contribution is to be
computed. Equation (8) therefore defines how the net
power (i.e. Px,) provided by a net muscle joint torque is
distributed between the crank (i.e. Pcrani) and the limb
segments (i.e. Ppimps), Where Py is equivalent to the
product of the net muscle joint torque and the corres-
ponding joint angular velocity. The power distribution
due to any non-muscular torque or force (e.g. gravity) can
be computed similarly.

Mechanical energy generation, absorption, and transfer

A net muscle joint torque may, theoretically, influence
the mechanical energy of the crank and the limb seg-
ments in one of twelve ways (equation (8); Table 1). These
12 cases are combinations of three primary energy in-
fluences which a net muscle joint torque can exert on
a dynamic system (Aleshinsky, 1986; Robertson and
Winter, 1980). A net muscle joint torque may generate
mechanical energy (Pne > 0, cases 1-5 in Table 1) to
either the crank, the limb segments, or both. In this
situation, it functions as an energy source since it puts
mechanical energy into the system. At other times, a net
muscle joint torque may absorb mechanical energy
(Pnet <0, cases 6-10) from either the crank, the limb
segments, or both. Here it acts as an energy sink since it
takes mechanical energy out of the system. Finally, a net
muscle joint torque may transfer mechanical energy
(Pcrank and Ppimps have opposite signs) from the limb
segments to the crank or vice versa, while either simulta-
neously generating energy (cases 4 and 5), simultaneously
absorbing energy (cases 9 and 10), or neither (cases 11
and 12). Tt then functions as an energy channel since it
redistributes mechanical energy between the crank and
the limb segments. It should be noted that a net muscle
joint torque generates, absorbs, or transfers energy to or

Table 1. Mechanical energy flow that a torque or force can cause. Twelve possibilities could theoretically exist in pedaling. Actually,

some are much more common than others (see text). Because the effective crank inertial load is large relative to the limb segment

inertias, ipsilateral torques and forces influence the mechanical energy of the contralateral limb very little. Thus, an ipsilateral torque

or force contributes to Limbs power essentially by affecting the ipsilateral limb segments alone, and to Crank power, essentially
through its contribution to the driving component of the ipsilateral pedal reaction force

Primary Generated
Power plot energy to/(absorbed Transferred
Case Net Crank Limbs features influences from) from
1 + + + Net > Crank Generation Crank and
Net > Limbs Limbs
2 + + 0 Net = Crank Generation Crank
Limbs =0
3 + 0 + Net = Limbs Generation Limbs
Crank =0
4 + + - Crank > Net Generation and Crank Limbs to
Net > Limbs transfer Crank
5 + - + Limbs > Net Generation and Limbs Crank to
Net > Crank transfer Limbs
6 - — - Crank > Net Absorption (Crank and
Limbs > Net Limbs)
7 - — 0 Net = Crank Absorption (Crank)
Limbs = 0
8 - 0 - Net = Limbs Absorption (Limbs)
Crank =0
9 - - + Limbs > Net Absorption and (Crank) Crank to
Net > Crank transfer Limbs
10 - + - Crank > Net Absorption and (Limbs) Limbs to
Net > Limbs transfer Crank
11 0 + - Net =0 Transfer Limbs to
Crank = — Limbs Crank
12 0 - + Net =0 Transfer Crank to
Limbs = — Crank Limbs
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from the crank by contributing to the driving component
of the pedal reaction force.

Similar analyses are helpful for understanding how
non-muscular forces may influence mechanical energy
flow. The effective friction force at the crank always
absorbs mechanical energy (Pno <0, cases 6—10) and
always acts as an energy sink. Velocity-dependent and
gravity forces, being conservative (Halliday and Resnick,
1981), can only transfer mechanical energy between the
crank and the limb segments (Px, = 0, cases 11 and 12),
again by their contribution to the driving component of
the pedal reaction force. Thus, velocity-dependent and
gravity forces can only act as energy channels (in this
analysis, gravity is treated like any other force acting on
the dynamical system). For a frictionless, revolute joint
(e.g. the pedal, ankle, knee, and hip joints in our model),
intersegmental reaction forces can only transfer energy
between the two adjacent segments (Ingen Schenau and
Cavanagh, 1990; Robertson and Winter, 1980). Because
intersegmental reaction forces are a consequence of the
forces/torques appearing in equation (1), the energy
these intersegmental reaction forces transfer is accounted
for automatically by a state—space power analysis.

Similar to the free-body power analysis used by Ingen
Schenau et al. (1990) to study pedaling, the above
state—space power analysis is only used to study the
instantaneous flow of energy. Thus, no assumptions are
made regarding mechanical energy expenditure as de-
fined by Aleshinsky (1986) or the relative metabolic cost
of positive versus negative net muscular power (e.g. see
Williams, 1985).

Verification of dynamical pedaling model

Because a state—space power equation is model de-
pendent, we verified that our dynamical pedaling model
(Fig. 1) can simulate experimental kinematic and kinetic
trajectories. Nominal pedal reaction force, crank angle,
and pedal angle trajectories were defined by averaging 10
consecutive cycles of right and left side data from 10
recreational male cyclists (age 27.5 + 1.8 yr, height
1.80 + 0.03 m, and weight 738 + 67 N) (Fregly, 1993;
Fregly et al., 1995). All subjects pedaled a Monark er-
gometer at 75 rpm with a 225 W workload, used cleated
cycling shoes and toe clips, and exhibited similar pedal-
ing kinematics and kinetics. Nominal net muscle joint
torque trajectories were computed from the nominal
force and angle trajectories using an inverse dynamics
approach (Hull and Jorge, 1985; Redfield and Hull, 1986).
Limb segment masses, mass centers, and moments of
inertia were estimated from averaged subject weight and
limb segment lengths using Dempster (1955). The result-
ing nominal experimental trajectories (Fig. 2) are similar
to those reported elsewhere (Ericson et al., 1986; Hull and
Jorge, 1985; Ingen Schenau et al.,, 1992, 1990; Redfield
and Hull, 1986).

A dynamic simulation of two-legged pedaling was then
computed using a parameter optimization algorithm
(Pandy et al., 1992), where the cost function minimized
the mean square error between experimental and
simulated net muscle joint torque trajectories (i.e. opti-
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Fig. 2. Nominal experimental trajectories. (a) Pedal reaction
forces. Positive tangential force advances the crank and positive
normal force is directed toward the crank center. (b) Net muscle
joint torques. Positive joint torque is in the extensor direction.
All trajectories are similar to those reported elsewhere (see text).
The downstroke (power stroke) is defined as the region where
the crank angle 6, is between 0° and 180°, the upstroke (recovery
stroke) where 6, is between 180° and 360°, top dead center
(TDC) where 0, =0° and bottom dead center (BDC) where
0, = 180°.

mal tracking). To produce a cyclic, symmetrical motion, we
constrained the contralateral and ipsilateral net muscle
joint torques to be equal and the final state (i.e. ® and @ in
equation (1)) to match the initial state. We quantified the
resulting performance of the model by computing the
root-mean-square (i.e. RMS) errors between the experi-
mental and simulated trajectories. The crank angle, pedal
angle, pedal force (brought into evidence via Kane’s
method), and net muscle joint torque trajectories were all
tracked to within an acceptable 1% RMS error (max-
imum errors were small as well).

To check the mechanical power computations, we used
the pedaling simulation found above to calculate the net
power of the entire two-legged cyclist model using two
approaches. First, an explicit expression for the total
mechanical energy E of the system was differentiated to
calculate dE/dt. Second, equation (7) was used to com-
pute the total power of each segment, and these segment
powers were then summed to determine Py, due to the
simultaneous influence of all torques and forces in the
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model. At each point in the crank cycle, we found that

E_p 9
dt — 4 Net- ( )
RESULTS

Using equations (7), (8), and Table 1, we investigated
how net muscle joint torques, gravity forces, motion-
dependent forces, and friction forces generate, absorb,
and transfer energy between the crank and the limbs.
Consider first the mechanical power distributions due to
torques and forces acting on both limbs and the crank.
Throughout the crank cycle, the six net muscle joint
torques (i.e. three per limb) together primarily generate
energy to the crank (Fig. 3(a), approximately case 2 in
Table 1), while the effective frictional resistance torque
primarily absorbs energy from the crank (Fig. 3(d), ap-
proximately case 7). In contrast, velocity-dependent and
gravity forces transfer only small amounts of energy
between the crank and the limb segments (Figs 3(b) and
(c), cases 11 and 12). Thus the primary flow of mechanical
energy during cycling is from the net muscle joint torques
in the limbs to the frictional resistance at the crank
(Ericson, 1988).
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Consider next the mechanical power distributions due
to torques and forces acting only on one limb. These
torques and forces have virtually no mechanical power
influence on the opposite limb (Table 1, caption). During
the downstroke (0—180°), the three ipsilateral net muscle
joint torques together generate energy to the crank while
simultaneously transferring energy to the crank from the
limb (Fig. 4(a), case 4). Ipsilateral gravity forces also
transfer energy to the crank during most of the down-
stroke (Fig. 4(c), case 11). In the first half of the upstroke
(180-270°), ipsilateral net muscle joint torques primarily
generate energy to both the crank and the limb (Fig. 4(a),
case 1), while in the second half (270-360°), they mainly
generate energy to the limb while also transferring energy
to the limb from the crank (case 5). Ipsilateral gravity
forces augment this energy flow to the limb by transfer-
ring energy to the limb from the crank (Fig. 4(c), case 12).
Over the entire crank cycle, ipsilateral velocity-depen-
dent forces transfer only small amounts of energy
(Fig. 4(b), cases 11 and 12). Thus, energy flows primarily
to the crank in the downstroke and to the limb in the
upstroke, and gravity forces as well as net muscle joint
torques acting on the limb play an important role in this
process.
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Fig. 3. Mechanical power distributions due to torques and forces acting on both limbs and the crank.

(a) Bilateral net muscle joint torques, (b) bilateral velocity-dependent forces, (c) bilateral gravity forces, and

(d) friction. Net is the power contributed to all segments in the model, including the crank, Crank is the

power contributed to the crank segments, and Limbs is the power contributed to the segments of both limbs.
Thus, Net = Crank + Limbs.
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Fig. 4. Mechanical power distributions due to torques and for-
ces acting on one limb. (a) Ipsilateral net muscle joint torques, (b)
ipsilateral velocity-dependent forces, and (c) ipsilateral gravity
forces. Summing the three Net power curves in (a), (b), and (c), the
three Limbs power curves, and the three Crank power curves
essentially reproduces three of the power curves reported by
Ingen Schenau et al. (1990) (their Figs 3, 4, and 6, respectively).
Thus, the three Crank power curves in (a), (b), and (c) show how
the total power contributed to the crank by the ipsilateral pedal
reaction force is decomposed into contributions from the ipsilat-
eral net muscle joint torques together, the ipsilateral velocity-
dependent forces together, and the ipsilateral gravity forces
together.

Finally, consider the mechanical power distributions
due to individual net hip, knee, and ankle joint torques.
The net hip joint torque primarily generates energy to the
limb in the power stroke (Fig. 5(a), approximately case 3)
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Fig. 5. Mechanical power distributions due to net muscle joint
torques acting on the ipsilateral limb. (a) Net hip joint torque, (b)
Net knee joint torque, and (c) Net ankle joint torque. The three
Net power curves are similar to those reported elsewhere (Eric-
son, 1988; Ericson et al., 1986; Ingen Schenau et al., 1990, 1992).
The small negative dip in Net power for the net knee joint torque
may be due to the requirement that the subjects pedal smoothly
in our experiments. Summing the three Net power curves in (a),
(b), and (c) produces the Net power curve shown in Fig. 4(a) (and
similarly for the three Crank and Limbs power curves). Thus, the
three Crank power curves in (a), (b), and (c) show how the
summed power contributed to the crank by all the net muscle
joint torques is decomposed into individual contributions.

and has very little mechanical energy influence in the
recovery stroke. The net knee joint torque primarily
generates energy to the crank over the entire crank cycle
(Fig. 5(b), approximately case 2). The net ankle joint
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torque primarily transfers energy, from the ipsilateral
limb to the crank in the power stroke (Fig. 5(c), case 4 due
to some energy generation to the crank as well), and from
the crank to the limb in the recovery stroke (case 12).

DISCUSSION

The net hip and knee muscle joint torques produce
most of the energy needed to propel the crank during
pedaling (Ericson, 1988; Figs 5(a) and (b) solid lines). The
state—space power approach shows how each net muscle
joint torque, and each non-muscular force as well, con-
tribute to the power of the crank and limb at each point
in the crank cycle (Figs 3—5). This full decomposition of
power is possible because the intersegmental reaction
forces are implicitly being fully decomposed (i.e. the con-
tribution of each torque and force to each intersegmental
force is being accounted for and each contribution can be
computed, if desired). A free-body power analysis is ex-
tremely limited in this regard. However, a state—space
approach requires that a set of closed-form state—space
dynamical equations describing the entire system consist-
ing of subject and equipment be found. These equations
are task-specific, can be difficult to derive, and are more
difficult to validate (Zajac, 1993). In pedaling, the
state—space approach requires not only a model of the
body segments, as is required in the free-body approach,
but also a dynamical model of the crank load (e.g. Fregly,
1993).

Net knee joint torque acts independently through top and
bottom dead center

One way energy can be delivered to the crank is to
have a net muscle joint torque act ‘independently’. The
clearest example is where a net muscle joint torque,
acting as an energy source, generates to the crank almost
all of the energy it produces (Table 1, case 2). For this to
happen, the net power produced by the net muscle joint
torque must approximately equal the power it delivers to
the crank through its contribution to the driving com-
ponent of the pedal reaction force.

The net knee joint torque is the best example of a joint
torque acting independently to deliver energy to the
crank (Fig. 5(b); approximately case 2), most notably
immediately after top dead center (TDC, 0°) and bottom
dead center (BDC, 180°) of the stroke (Fig. 5(b), 0-90°
and 180-270°). TDC and BDC are where crank torque
produced by both legs is closest to zero, and thus where
decoupling of the freewheel from the flywheel is most
likely to occur (Fregly, 1993). Hence, net knee extensor
joint torque at the beginning of the downstroke and net
knee flexor joint torque at the beginning of the recovery
stroke (Fig. 2(b), long dashed-line) are probably essential
to prevent freewheel-flywheel decoupling.

Past work supports this notion that the net knee exten-
sor and flexor joint torques act independently near
TDC and BDC. Ericson (1988) found that the peaks in
the net power curve from the knee joint torque increase
near 45° and 225° when the frictional resistance of the

ergometer is doubled. Hull and Jorge (1985) showed that
when the frictional resistance is increased by about 20%
during pedaling on rollers, the driving component of the
pedal reaction force from 200° to 260° assists propulsion
more, concomitant with a large increase only in the net
knee flexor joint torque.

Net hip and ankle joint torques act synergistically
during the downstroke

Another way energy can be delivered to the crank is to
have two net muscle joint torques act in synergy. A high-
ly restrictive example is where one net muscle joint
torque acts only as an energy source, generating energy
only to the limb segments (Table 1, case 3), and the other
acts only as an energy channel, transferring the same
energy to the crank (case 11). In this example, the joint
torque acting as an energy source would not contribute
to the driving component of the pedal reaction force.
Otherwise it would also generate other energy to the
crank (case 1) or also transfer other energy from the
crank to the limb (case 5). The joint torque acting as an
energy channel would, however, contribute to the driving
component of the pedal reaction force in order to transfer
the energy from the limb to the crank. On the other hand,
the joint angular velocity would have to be zero; other-
wise the net muscle joint torque would not be just an
energy channel but would also be an energy source
(generating energy, case 4) or an energy sink (absorbing
energy, case 10).

The net ankle and hip joint torques seem to act in
synergy during the downstroke. The net hip joint torque,
being the energy source, produces much energy then
(Fig. 5(a), solid line, 0-180°) and virtually all of it is
generated to the ipsilateral limb (Fig. 5(a), short dashed
line). The net ankle joint torque, being the energy chan-
nel, simultaneously transfers energy from the limb
(Fig. 5(c), short dashed line) to the crank (Fig. 5(c), long-
dashed line) at about the same rate. Thus, the net ankle
extensor joint torque (Fig. 2(b), solid line) acts in synergy
with the net hip extensor joint torque (Fig. 2(b), short
dashed line) during the downstroke because the net hip
joint torque, by not being able to contribute to the
driving component of the pedal reaction force, cannot
alone deliver to the crank the energy it produces.

The existence of a net ankle and hip extensor joint
torque synergy is supported by two important observa-
tions during the downstroke. First, relative to the net
ankle joint torque, other energy channels transfer only
a small amount of mechanical energy to the crank. This
can be seen by analyzing how individual velocity-depen-
dent and gravity forces (i.e. the only alternative energy
channels) transfer mechanical energy between the crank
and the ipsilateral limb in the downstroke. The mechan-
ical power curves produced by any ipsilateral velocity-
dependent or gravity force have the same shape as the
mechanical power curves produced by all the ipsilateral
velocity-dependent or gravity forces collectively
(Figs 4(b) and (c)). Thus, the net ankle extensor joint
torque is the only significant channel for transferring
energy from the ipsilateral limb to the crank in the
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downstroke (compare Limbs curve in Fig. 5(c) with those
in Figs 4(b) and (c)).

Second, relative to the net hip joint torque, other
energy sources supply much less mechanical energy to
the limb. One other energy source is the mechanical
energy stored in the limb (primarily potential energy). We
calculated that the limb loses 23 J of energy during the
downstroke, leaving almost no stored mechanical energy
at the bottom of the stroke. Another possible energy
source is the hip joint reaction force (which in this situ-
ation would be treated like an applied force). Ingen
Schenau et al. (1990) have estimated the energy flow
through the hip joint during seated ergometer pedaling.
Based on this power curve (their Fig. 5), we calculated
that 12J flowed through the hip joint into the thigh
segment during the downstroke in their experiments.
However, this is probably an upper limit in our experi-
ments because a lower resistance torque should result in
less hip motion (Neptune and Hull, 1995) and because
a marker over the greater trochanter likely overestimates
the movement of the true hip joint center (Neptune and
Hull, 1995). Because the net hip joint torque in our
subjects generates 38 J to the limb during the down-
stroke, the net hip joint torque is, therefore, a significant
energy source to the limb (i.e. compare the 38 J from the
net hip joint torque to the maximum of 35 J, minimum of
23 J, from the other sources).

Given the estimates above, it can be computed that
between 50% and 82% of the energy generated to the
limb by the net hip joint torque is transferred to the crank
by the net ankle joint torque. During the downstroke, the
net ankle joint torque always takes more energy out of
the limb than the net hip joint torque puts in (compare
Fig. 5(c), short dashed line, with Fig. 5(a), short dashed
line). Thus, since the net ankle joint torque transfers 54 J
from the limb to the crank (Fig. 5(c), short dashed line,
0-180°), it transfers as much as 82% of the energy gener-
ated to the limb by the net hip joint torque (assuming
negligible hip motion, we have (54 — 23)/38 = 0.82, or
82%). Even if the maximum 12 J is transferred through
the hip joint, the result is still 50% (i.e. (54 — 23 — 12)/
38 = 0.5, or 50%).

We conclude that the net ankle and hip extensor joint
torques act in synergy to deliver energy to the crank
during the downstroke. Since Ericson (1988) found that
a doubling of the ergometer frictional resistance causes
the peaks in the net power curves of only the net ankle
and hip joint torques to increase (near 120°), past work
also supports this conclusion.

Possible synergies during the upstroke

A corollary to an ankle-hip extensor synergy in the
downstroke is an ankle-hip flexor synergy in the up-
stroke, which is, mechanically, a theoretical possibility
for delivering energy to the crank (Fregly, 1993). How-
ever, an ankle-hip flexor synergy is not used because an
ankle extensor joint torque is produced throughout the
upstroke (Fig. 2(b), solid line, 180-360°) and a hip exten-
sor joint torque for half the upstroke as well (Fig. 2(b),

short dashed line, 180-270°). In fact, the ankle extensor
joint torque transters energy from the crank to the limb
in the upstroke (Fig. 5(c), 180-360°). Gravity forces in
this region do the same (Fig. 4(c), 180-360°). Indeed,
these two energy channels together restore the potential
energy of the limb in the upstroke. A reason why an
ankle-hip flexor synergy is not observed may be that
energy delivery to the crank by the leg in the recovery
stroke is inefficient because a substantial increase in net
hip flexor joint torque would be necessitated and hip
flexor muscles are weaker than hip extensor muscles
(Hoy et al., 1990). Thus, it may be more efficient to let the
downstroke leg produce the energy needed both for
crank propulsion and for recovery of the upstroke leg
rather than invoke an ankle-hip flexor synergy.

Finally, a knee flexor-ankle extensor synergy may
exist to deliver energy to the limb in the upstroke
(Figs 5(b) and (c): 180-315°). However, since gravity for-
ces and net muscle joint torques of the contralateral
downstroke leg deliver energy to the crank then (Figs 4(a)
and (c), 0-135°), the energy transferred from the crank to
the upstroke limb by the ankle extensor joint torque may
not be the same energy generated to the crank by the net
knee joint torque of the upstroke leg.

Net muscle joint torque vs. muscle force coordination

The state—space power analysis is equally applicable to
the study of individual muscles and, if applied, may
elucidate muscle synergies being used by the CNS to
control pedaling. Clearly, the contribution of each
muscle force to the mechanical power of the crank and
each body segment can be found since the muscle joint
torque(s) produced by each muscle is (are) given by its
moment arm(s). The determination of the muscle forces,
though difficult, is possible by ascribing dynamical prop-
erties to the muscles and including them in the
state—space dynamical equations (e.g. Hatze, 1980; Zajac,
1989, 1993).

It is speculative to predict how individual muscles will
coordinate energy flow to the crank based on a net joint
torque analysis, as used here, because of the action of
biarticular muscles (Ingen Schenau et al., 1992). Never-
theless, we conjecture that the uniarticular hip and ankle
extensor muscles (e.g. gluteus maximus and soleus) will
act in synergy during the downstroke and that the uniar-
ticular extensor and flexor knee muscles will act indepen-
dently at the limb flexion—extension transitions. A net
joint torque study, such as this one, cannot hope to reveal
the role of the biarticular muscles of the leg (e.g. ham-
strings, rectus femoris, gastrocnemius).
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