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Abstract—When video-based motion analysis systems are used to measure segmental kinematics, the major
source of error is the displacement of skin-fixed markers relative to the underlying skeletal structure. Such
displacements cause the marker representation of the segment to deform, thereby decreasing the accuracy of
subsequent three-dimensional kinematic calculations. We have developed a two-step solidification proced-
ure to address this problem. First, the mean rigid shape is computed which best represents the time-varying
marker configuration of each segment. Second, a least-squares minimization is used to replace the measured
marker coordinates with those corresponding to the best-fit mean rigid shape. Rigid body theory can then
be applied unambiguously to perform kinematic analyses.

To evaluate this approach, we defined an unperturbed three-dimensional reference movement using
kinematic data from the swing phase of gait. After perturbing the marker coordinates with artificial noise,
the rotation matrix and translation vector (absolute and relative movement) between each pair of successive
images were computed using (1) reference frames fixed directly to the perturbed marker coordinates, (2)
a least-squares minimization procedure found in the literature, and (3) the proposed solidification proced-
ure. The least-squares and solidification procedures produced extremely similar results which, relative to
the direct calculation, reduced kinematic errors on average by 20-25% when the maximum distance
between markers was small (e.g. < 15 cm). The solidification methodology therefore combines the numer-

ical benefits of the least-squares method with the conceptual benefits of a rigid body method.

INTRODUCTION

Video-based motion analysis systems are being used more
and more frequently to study body segmental and joint
kinematics during movements such as gait. This is often
accomplished by recording the motion of three or more
individual markers attached directly to the skin of each
moving segment (e.g. Cappozzo, 1984; Kadaba et al., 1990;
Ramakrishnan and Kadaba, 1991). If the marker representa-
tion of the body segment maintained a rigid shape through-
out the motion, then the three-dimensional coordinates a; of
any marker i in one position could be related to its coordi-
nates b; in a successive position by

b; = Ra; +t, (1)

where the rotation matrix R and translation vector t are
defined relative to the laboratory-fixed reference frame.
However, a rigid shape is not maintained, primarily because
skin and soft tissue movement cause displacements as large
as 2 cm between a marker and its corresponding anatomical
landmark (Andriacchi, 1987; Cappozzo et al., 1993). Conse-
quently, rigid body theory, such as equation (1), becomes less
accurate for performing kinematic calculations based on the
measured marker coordinates.

Both a physical and a numerical solution have been pro-
posed to address this problem. The physical solution in-
volves mounting three (or more) markers on a rigid object
which is securely strapped to the body segment (e.g. Boccardi
et al., 1981; Stokes et al., 1989). The advantage of this ap-
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proach is that rigid body theory can be applied unambigu-
ously to calculate segmental kinematics from the measured
marker coordinates (assuming negligible measurement er-
rors). The relative movement between two segments can also
be calculated from rigid body relationships (Woltring, 1991).
The drawback of this approach is that the rigid object is
often strapped over a moving muscle mass rather than over
anatomical landmarks with little intervening soft tissue. As
a result, soft tissue interference between the markers and the
bone introduces motion perturbations which increase with
distance from the bone. Furthermore, such perturbations are
difficult to remove by low-pass filtering since their frequency
content is close to that of the motion.

The numerical solution involves using the least-squares
procedure to make measured data from individual markers
conform to a rigid body assumption (Séderkvist and Wedin,
1993; Spoor and Veldpaus, 1980; Veldpaus et al., 1988).
When the marker representation of the body segment de-
forms, equation (1) is only satisfied approximately, and the
best-fit R and t can be found by solving an unweighted
least-squares minimization problem of the form

m
min Y, ||[Ra; + t — b;||?, 2)
i=1
where R is constrained to be an orthogonal rotation matrix
(i.e. RTR = I; det(R) = 1) and m is the number of markers
(m = 3). By solving two successive least-squares problems (2),
the rotation matrix and translation vector describing the
relative motion between two segments can also be computed
(Soderkvist and Wedin, 1993). The advantage here is that
individual markers can be mounted over anatomical land-
marks with little intervening soft tissue, thereby minimizing
soft tissue perturbations and improving the accuracy of
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kinematic results. The drawback is that the results are purely
numerical, meaning that rigid body theory cannot be applied
directly to calculate desired kinematic quantities (e.g. screw
axis parameters) between any pair of images.

This paper presents a solidification procedure which com-
bines the advantageous features of both these approaches.
By solidifying the marker configuration numerically rather
than physically, the proposed method permits the use of
individual markers and rigid body theory simultaneously. In
addition to the methodology, a numerical experiment based
on kinematic data from the swing phase of gait is used to
validate the procedure as well as to compare it with existing
methods.

SOLIDIFICATION METHODOLOGY

To facilitate calculation of body segmental and joint kin-
ematics, marker trajectories consistent with a rigid body
assumption can be substituted for marker trajectories re-
corded by a motion analysis system (Chéze, 1993). To do
this, two successive steps are proposed, both of which utilize
the directions between markers rather than the positions of
markers, as Dimnet (1978) has shown that the directions are
more accurate. First, the three markers are identified which
define the least-perturbed triangle over the entire motion,
and the ‘solid’ triangle shape which best fits this time-varying
deformable triangle is computed. Second, the position of the
‘solid’ triangle which best fits the measured triangle is cal-
culated at each point in the motion, and the three measured
marker positions are replaced accordingly.

Determination of a solid triangle shape

Three non-collinear markers are sufficient to determine
a segment’s position and orientation in three-dimensional
space. Given m markers fixed on the same segment (m > 3),
the three markers are sought which best represent a rigid
triangle over the entire movement. Using all n experimental
images, the standard deviations SD,, SD,, and SDj; in the
three vertex angles 6, 6,, and 05 of each possible triangle
are computed. The triangle for which the sum
SD, + SD, + SDj is the smallest is then selected to define
the three markers showing the least shape deformation.

Once the ‘best’ three markers have been defined, the solid
triangle shape is determined from the corresponding n meas-
ured triangles using an iterative search and elimination pro-
cedure. For each iteration, the mean values 8,, 8,, and 85 of
the three vertex angles are computed from the remaining
images. The one image for which the sum
61 — 0 + (0, — 0,)* + (03 — 05)* is the largest is found
and eliminated, and the process is repeated until a given
percentage of experimental images remains. The goal of this
procedure is to eliminate extremely deformed images, as
caused by merging or partially occluded markers, from the
solid shape calculation. In practice although the optimal
percentage of least-deformed images to retain varies from
experiment to experiment, retention of approximately 75%
generally provides good results.

The solid shape is then defined using mean values cal-
culated from the images which remain. Since the six mean
triangle parameters (i.e. three angles and three lengths) are
not consistent with a unique triangle shape, three mean
parameters must be selected. In order to favor the best
directions (or angles) between markers, we have defined the
solid triangle using the mean value of (1) the least deformed
angle (i.e. the angle with the smallest standard deviation), (2)
the next least deformed angle, and (3) the side between these
two vertices.

Fitting the solid triangle to each measured triangle

To determine the best fit of the solid triangle to each
measured triangle, a least-squares minimization is used. To
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Fig. 1. Least-squares positioning of the solid triangle (sub-
script S) relative to a measured triangle. Point g, corres-
ponds to the least deformed angle 0 of the measured triangle,
while points g, and g3 lie on the two adjacent sides, such that
l19142]l = 1141931l = 1. Given the corresponding angle 6, and
points p; (i = 1,2, 3) of the solid triangle in any arbitrary
initial position, a least-squares procedure can be used to find
the rotation matrix R and translation vector t which minim-
ize the distances between the points p;; and g; (i = 1,2, 3).
Measured triangle coordinates b; can then be replaced with
solidified triangle coordinates b, via the relationship
bis = Ra; +t(i=1,2,3)

perform the minimization, important points must be defined
for the measured triangle in each position (Fig. 1). Let b; be
the vertex corresponding to the least deformed angle 6, b, the
vertex corresponding to the next least deformed angle, and
b, the remaining vertex. Point g, is then defined to coincide
with vertex b,, point g, to lie on the line between vertices b,
and b, at unit distance from q,, and point g5 to lie on the line
between vertices b, and b5, also at unit distance from g,. For
the solid triangle, which is placed in any arbitrary position in
the laboratory-fixed reference frame, angle 6 is defined to
correspond to angle 0, points ay, a,,, and as,, are defined to
correspond to points by, b,, and b, respectively, and points
P1ss P2s, and ps to correspond to points g, q,, and gs.

With these definitions, the following least-squares posi-
tioning problem is easily solved using the singular value
decomposition (SVD) algorithm described by Soderkvist
and Wedin (1993):

3
min ) ||Rp; +t — qil*. 3)

i=1
This algorithm was chosen since it is not only straightfor-
ward to implement but also more stable than other least-
squares approaches (Soderkvist and Wedin, 1993). Using the
points p;, and ¢; in equation (3) rather than the actual
triangle vertices a;, and b; (i = 1, 2, 3) essentially weights the
least-deformed vertex the heaviest while still solving an un-
weighted least-squares problem. When one vertex is much
more deformed than the other two, this approach will often
produce better results than using the actual triangle vertices
in the minimization; when all three vertices are equally
deformed, this approach will normally produce comparable
results (see numerical results). Note that when only three
markers are used to define the solidified shape, the optimal
position of the solid triangle will always be in the plane

defined by the three markers.

Solution of the above least-squares problem permits the
three measured marker coordinates to be replaced with
those corresponding to the solid triangle shape. Specifically,
by applying the R and t found from equation (3) to the solid
triangle coordinates a;,, the measured marker coordinates b;
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can be replaced with solidified coordinates b (i = 1, 2, 3):
“)

Following the replacement, R and t serve no further purpose
and can be discarded, which explains why any arbitrary
initial position of the solid triangle is sufficient. After repeat-
ing this process for each image, including those eliminated
from the solid shape calculation, rigid body theory can be
used to perform kinematic analyses.

Although described above for a solid triangle, the entire
solidification procedure is equally applicable to solid shapes
of higher dimensions. For example, if four solidified markers
were used, the solid triangle would be replaced by a solid
tetrahedron, and the ‘best’ angle used in the minimization
problem would be replaced by the ‘best’ set of three angles
corresponding to the least deformed vertex. The SVD least-
squares minimization is also easily extendible to more than
three markers (S6derkvist and Wedin, 1993).

b, = Ra; + t.

NUMERICAL EXPERIMENTS

To validate the method described above, as well as to
provide a basis for comparison, numerical experiments were
performed based on experimental data from the swing phase
of gait. A non-perturbed three-dimensional reference move-
ment was generated by applying experimental gait kin-
ematics to two unperturbed triangles representing the
marker configurations on the shank and thigh segments (Fig.
2). The simulated marker coordinates of each segment were
determined in 11 successive swing phase positions (ie. 10
motion steps) separated by 1/20 s intervals. For each pair of
successive positions, the reference (superscript r) rotation
matrix R} and translation vector t} were calculated which
described the absolute motion of the shank segment (k = s),
the absolute motion of the thigh segment (k = t), and the
relative motion between the shank and thigh segments
(k=r).

Starting from this unperturbed reference movement, 10
different perturbed movements were generated by introduc-
ing artificial noise into each three-dimensional marker coor-
dinate. Since Cappozzo et al. (1993) found that skin-fixed
markers move in a continuous rather than random fashion

Fig. 2. Visualization of the simulated marker coordinates
used in the numerical experiments. The data correspond to
the unperturbed movement of the shank and thigh segments
during the swing phase of gait. Markers on the thigh (top
segment) correspond to (1) the greater trochanter, (2) the
lateral femoral epicondyle, and (3) the medial femoral epi-
condyle, while markers on the shank (bottom segment) cor-
respond to (1) the head of the fibula, (2) the lateral malleolus,
and (3) the medial malleolus. The motion occurs from right
to left at 1/20 s intervals.
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relative to their underlying anatomical landmarks, a con-
tinuous noise model of the form A sin(wt + ¢) was chosen,
where A is the amplitude of the noise, w the frequency, ¢ the
simulated time, and ¢ the phase angle. The parameters A, w,
and ¢ were random numbers scaled to represent the motion
artifacts anticipated during gait. Since skin and soft tissue
perturbations as large as 2 cm have been observed experi-
mentally (Andriacchi, 1987, Cappozzo et al., 1993), each
amplitude A was scaled to be between 0 and 1 cm (i.e. a 2 cm
range). Similarly, since such perturbations typically contain
the same frequencies as those of the movement, each fre-
quency w was scaled to be between 0 and 25rads™? (i.e.
roughly 0 to 3 times the frequency of a 1 to 14Hz gait
movement). Finally, to allow any phase relationship between
the various perturbing sine functions, each phase angle
¢ was scaled to be between 0 and 27 rad.

Once the ten perturbed movements were defined, four
different methods (Table 1) were used to calculate the pertur-
bed (superscript p) rotation matrix R and translation vector
t; (k=s, t, and r) between each pair of successive images.
With methods (a) and (b), R} and t{ (k = s and ¢) (i.e. the
absolute movements) were calculated by fixing a reference
frame directly to the perturbed marker coordinates and then
applying rigid body theory. The x direction in method (a)
was defined from marker 2 to marker 3 (ie. the shortest
direction and therefore the most susceptible to marker coor-
dinate errors; Fig. 2) and in method (b) from marker 2 to
marker 1 (i.e. a much longer direction and therefore less
susceptible to marker coordinate errors; Fig. 2). For both
methods, marker 2 was chosen as the origin, the z direction
was taken as perpendicular to the plane defined by the three
makers, and the y direction was defined from z x x. The
points o, x, y, and z were then defined as the origin and the
points at the end of the x, y, and z unit vectors, respectively.
From the coordinates of these four non coplanar points
expressed in the laboratory-fixed reference frame, the 4 x 4
transformation matrix 7, (k = s and t) between each pair of
successive images was calculated using the rigid body equa-
tions reported by Kinzel et al. (1972). After extracting R? and
t; from T, (k = sand t), R? and " (i.c. the relative movement)
were calculated using the rigid body equations reported by
Woltring (1991).

With methods (c) and (d), Rf and ¢ (k = s, t, and r) were
calculated by using a least-squares minimization procedure.
Method (c), which did not explicitly define a solid shape,
used the SVD least-squares procedure outlined by Soder-
kvist and Wedin (1993) to calculate R and t? (k = s, t, and r)
(i.e. both absolute and relative movements) from the pertur-
bed triangle vertices. Method (d) used the proposed solidifi-
cation procedure with 73% of the least-deformed images
retained (i.e. 8 out of 11 images). Once all marker coordinates
had been solidified, Rf and t{ (k = s, t, and r) were calculated

Table 1. Summary of the four methods used to calculate

rotation matrix and translation vector errors between each

pair of successive images. Methods (a) and (b) are performed

by fixing a reference frame directly to the perturbed marker

coordinates, where marker definitions are given in Fig. 2,

while methods (c) and (d) are performed by using least-
squares minimizations

Method Description

a Rigid body calculation with first axis directed
from marker 2 to marker 3

b Rigid body calculation with first axis directed
from marker 2 to marker 1

c Least-squares calculation without solidification

Least-squares calculation with solidification
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by direct application of rigid body theory, as described
above for methods (a) and (b). However, in contrast to these
methods, the choice of reference frame for a solidified tri-
angle has no influence on the kinematic results. All four
methods were validated by analyzing the unperturbed refer-
ence movement and verifying that the same rotation ma-
trices and translation vectors were found in each case.

The ability of each method to recover the unperturbed
kinematics was evaluated by calculating the magnitudes of
the rotation matrix and translation vector errors. The errors
(superscript €) R§ and t§ (k = s, t, and r) were computed from

R =R, — R,
ti=t—t, ©)

and their corresponding magnitudes from

3 3 1/2
IRSH =< D ) ,
i=1j=1
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3 12
||t§||=<2 t.2> ) (6)
i=1

where r;; is the ijth element of R§ and ¢; the ith element of t;.
For each method, local mean values of || Rf|| and ||t;]| (k = s,
t, and r) were computed from the 10 motion steps of each
perturbed movement. Global mean values were also com-
puted by averaging the errors from all 100 motion steps (i.e.
ten perturbed movements with 10 motion steps each).

NUMERICAL RESULTS

Consider first the local mean errors for the absolute move-
ment of the thigh (Fig. 3). Note that the absolute movement
of the shank demonstrates similar results and will not be
presented. Methods (c) and (d), both being least-squares
approaches, yielded similar mean rotation matrix and trans-
lation vector errors which were normally the smallest.

Absolute movement

0.12

Mean R error

Mean t error

Run

| B Method a

B Method b

B Methodc Method d J

Fig. 3. Local mean rotation matrix R (top) and translation vector t (bottom) errors for the absolute
movement of the thigh segment as calculated by methods (a)—(d) (see Table 1). Each bar represents the

average of ten motion steps from one perturbed movement (i.e. run), where R errors (dimensionless) and
t errors (millimeters) are calculated between each pair of successive images using equations (5) and (6).

Relative movement

0.12

Mean R error

Mean t emror

10

Run

l B Methoda [ Methodb [l Methodc Method d |

Fig. 4. Local mean rotation matrix R (top) and translation vector t (bottom) errors for the relative

movement between the shank and thigh segments as calculated by methods (a)—(d) (see Table 1). Each bar

represents the average of ten motion steps from one perturbed movement (i.e. run), where R errors

(dimensionless) and t errors (millimeters) are calculated between each pair of successive images using
equations (5) and (6).
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Method (b) generally produced only slightly larger mean
errors than did methods (c) and (d), while method (a), the
other rigid body approach, always yielded worse mean er-
rors with the exception of perturbed movements 5 and 7.
Thus, as the distance between the two markers defining the
first axis direction was increased, the errors obtained by
fixing a reference frame directly to the perturbed marker
coordinates were reduced (Cappozzo, 1984) and approached
those of a least-squares method.

Consider next the local mean errors for the relative move-
ment between the shank and thigh (Fig. 4). The two least-
squares methods (c) and (d) again produced similar and
generally the smallest mean rotation matrix and translation
vector errors. Relative to these methods, method (b) produc-
ed comparable mean errors while method (a) always yielded
larger mean errors, even for perturbed movements 5 and 7.
For method (a) to produce better results than methods (c)
and (d) for a relative movement, it would have to produce
smaller mean errors for the two component absolute move-
ments simultaneously, which is not likely based on Fig. 3.
Thus, the use of a least-squares method seems especially
warranted when calculating joint rather than segmental kin-
ematics.

Finally, consider the global mean rotation matrix and
translation vector errors for both the absolute movement of
the thigh and relative movement between the shank and
thigh (Fig. 5). At least two important observations can be
made. First, global mean errors were always greater for the
relative movement than for the absolute movement. How-

ever, they were only approximately \/5 rather than two
times greater due to the equation used to compute mean
errors (see equation (6)). Second, by switching from method
(a) to one of the other methods, global mean errors were
reduced by approximately the same percentage for the rela-
tive movements as for the absolute movement. The transla-
tion vector error showed a smaller percentage reduction

WWean R ertox

Wean \ ecrorx

Fig. 5. Global mean rotation matrix R (top) and translation
vector t (bottom) errors for the absolute movement of the
thigh segment and relative movement between the shank and
thigh segments as calculated by methods (a)—(d) (see Table 1).
Each bar represents the average of all 100 motion steps,
where R errors (dimensionless) and t errors (millimeters) are
calculated between each pair of successive images using
equations (5) and (6).

BM 28:7-H
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(20% compared to 25% for the rotation matrix) since it is
a function of both the rotation matrix error and the distance
from the center of the marker distribution to the origin of the
laboratory-fixed reference frame (Séderkvist and Wedin,
1993).

DISCUSSION

The preceding results reveal that the proposed solidifi-
cation procedure works just as well as an existing least-
squares method at reducing errors in kinematic calculations.
If the actual triangle vertices are used in equation (3), the
solidification results for each individual motion step will be
essentially identical to the least-squares results obtained
without solidification. Whether or not these methods are
advantageous appears to depend on the maximum distance
between two markers on the same segment, which influences
the extent to which marker perturbations will affect the first
and most critical axis direction (Cappozzo, 1984; Rama-
krishnan and Kadaba, 1991). For method (b), the first axis
direction was determined from markers separated by
35-40 cm, while for method (a), from markers separated by
12-13 cm. Thus, when the maximum distance between
markers is small (e.g. < 13 cm), a least-squares method (i.e.
(c) or (d)) seems to be warranted (Fig. 5). For larger max-
imum distances (e.g. between 13 and 35 cm), the crossover
point is not clear, although the systematic use of a least-
squares method is undoubtedly the safest approach.

Although the solidification procedure does not yield sub-
stantial numerical improvements compared to existing
least-squares procedures, it still possesses several advant-
ages. One is that it is conceptually simple, providing a geo-
metric interpretation of existing numerical approaches. Spe-
cifically, the rotation matrix and translation vector found
from a least-squares method without solidification (e.g.
Soderkvist and Wedin, 1993; Spoor and Veldpaus, 1980;
Veldpaus et al., 1988) correspond to the movement of the
best-fit mean rigid shape between the two positions. Another
advantage is that solidification provides a straightforward
way to identify erroneous or highly deformed images (i.e.
those eliminated from the mean shape calculation) which
could reduce the accuracy of kinematic calculations. Prob-
ably the biggest advantage of the solidification procedure is
that it permits the unambiguous application of rigid body
theory while maintaining the improved kinematic accuracy
of a least-squares method. After solidifying all experimental
images, no further least-squares minimizations are required
to perform any kinematic calculation between any desired
pair of images. For example, using Rodrigues’ equation,
screw axis parameters can be calculated directly from the
solidified marker coordinates without intermediate calcu-
lation of R and t (Spoor and Veldpaus, 1980).

One disadvantage of the solidification procedure is that
the mean shape calculation and fitting become more com-
plex as the number of solidified markers is increased beyond
three. Nonetheless, a solidified triangle is still the most com-
mon experimental situation, since it is often difficult to place
more than three segmental markers over anatomical land-
marks with little intervening soft tissue (e.g. the shank and
thigh segments). Furthermore, solidified shapes of higher
dimensions will not necessarily improve the error results. On
the one hand, additional solidified markers far from the
best-fit line to the existing three markers will tend to decrease
errors (Sdderkvist and Wedin, 1993; Veldpaus et al., 1988).
On the other hand, additional solidified markers located
over large muscle mass may actually increase errors, since
the solidification procedure only accounts for local triangle
deformation (e.g. as caused by skin elasticity) and not global
triangle displacement (e.g. as caused by muscle mass move-
ment), and since the three markers which define the solid
triangle shape are already those that show the least shape
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deformation. Further study is therefore required to deter-
mine the precise conditions under which additional solidified
markers will provide further improvements of kinematic
results.
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