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SUMMARY

For some problems global optimization algorithms may have a significant probability of not converging
to the global optimum or require an extremely large number of function evaluations to reach it. For
such problems, the probability of finding the global optimum may be improved by performing multiple
independent short searches rather than using the entire available budget of function evaluations on a single
long search. The main difficulty in adopting such a strategy is to decide how many searches to carry out
for a given function evaluation budget. The basic premise of this paper is that different searches may
have substantially different outcomes, but they all start with rapid initial improvement of the objective
function followed by much slower progress later on. Furthermore, we assume that the number of function
evaluations to the end of the initial stage of rapid progress does not change drastically from one search to
another for a given problem and algorithmic setting. Therefore we propose that the number of function
evaluations required for this rapid-progress stage be estimated with one or two runs, and then the same
number of function evaluations be allocated to all subsequent searches. We show that these assumptions
work well for the particle swarm optimization algorithm applied to a set of difficult analytical test problems
with known global solutions. For these problems we show that the proposed strategy can substantially
improve the probability of obtaining the global optimum for a given budget of function evaluations. We
also test a Bayesian criterion for estimating the probability of having reached the global optimum at the
end of the series of searches and find that it can provide a conservative estimate for most problems. Finally,
we demonstrate the approach on a particularly challenging engineering design problem constructed so as
to have at least 32 widely separated local optima. Copyright q 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

If we consider the general global unconstrained optimization problem for the real valued function
f (x) defined on the set x∈ D in Rn we cannot state that a global solution has been found unless an
exhaustive search of the set x∈ D is performed [1–3]. With a finite number of function evaluations,
at best we can only estimate the probability of arriving at or near the global optimum. To solve
global optimization problems reliably, the optimizer needs to achieve an efficient balance between
sampling the entire design space and sampling promising regions more densely for a more refined
search [4]. Many algorithms achieve this balance, such as the deterministic DIRECT optimizer [5]
or stochastic algorithms such as genetic algorithms [6], simulated annealing [7, 8], clustering [9],
and the particle swarm optimizer [10].

Although these global optimization algorithms are fairly robust, they can be attracted, at least
temporarily, towards optima that are not global (see, for example, the Griewank problem in
Figure 1). This difficulty can be addressed by allowing longer optimization runs or an increased
population size. Both options often result in a decrease in the algorithm efficiency, with no guarantee
that the optimizer will reach the global optimum.

It is possible that restarting the algorithm when its progress slows down may be a more efficient
approach. This idea is based on the hypothesis that several limited independent optimization
runs, each with a small likelihood of finding the global optimum, may be combined to yield a
vastly improved global convergence probability. This approach is routinely used for global search
using multi-start, or re-start local optimizers [11–13]. Le Riche and Haftka [14], for example, have
applied this approach with genetic algorithms for solving complex composite laminate optimization
problems.

When using local optimizers, a restart is simple because convergence is usually well defined.
With global optimizers on the other hand it is not that clear when to stop individual runs. That
is, the main difficulty is deciding how a fixed budget of computational resources should be

Figure 1. Multiple local minima for Griewank analytical problem surface plot in two dimensions.
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divided among optimization runs. The basic premise of this paper is that different runs may have
substantially different outcomes, but they all start with initial rapid progress followed by much
slower progress later on. Furthermore, we assume that the number of function evaluations to the
end of the rapid progress stage does not change drastically from one run to another for a given
problem and algorithmic setting. Therefore we propose that the number of function evaluations
required for this rapid-progress stage be estimated with one or two runs, and then the same number
of function evaluations be allocated to all subsequent searches The objective of this paper is to
test these assumptions and to demonstrate the effectiveness of the resulting multi-run strategy for
particle swarm optimization (PSO).

The organization of this manuscript is as follows: first, a brief description of the optimization
algorithm applied in this study, the PSO algorithm, is given (Section 2.1). Next, a set of analytical
test problems with known global solutions are described (Section 2.2), along with details on
calculating global convergence probabilities. A practical structural sizing problem is introduced in
Section 2.3. After that, the multiple run methodology is outlined (Section 2.4) and a general budget
strategy is presented for dividing a fixed number of fitness evaluations among multiple searches
on a single processor. The use of this method on a parallel processing machine is also discussed.
Numerical results based on the multiple run strategy for both single and multi-processor machines
are then reported and discussed (Section 3). Finally, general conclusions about the multi-run
methodology are presented (Section 4).

2. METHODOLOGY

2.1. Particle swarm optimization algorithm

The optimizer applied in this study is the particle swarm optimizer (PSO). It has strong global
search capabilities and, being a stochastic population-based optimizer, is an ideal candidate for
parallelization [15]. The PSO, introduced by Kennedy and Eberhart [10], is modelled on the
social behaviour of swarming animal groups such as bees, birds or fish. Communications among
individuals in the swarm serve to direct the search effort towards regions in the design space with
high feasibility.

Consider a swarm of p particles, with each particle’s position xik representing a possible solution
point in the design space D. For each particle i , Kennedy and Eberhart [10] proposed that the
position xik+1 be updated in the following manner:

xik+1 = xik + vik+1 (1)

with a pseudo-velocity vik+1 calculated as follows:

vik+1 =wkvik + c1r1(pik − xik) + c2r2(p
g
k − xik) (2)

Here, subscript k indicates a (unit) pseudo-time increment, pik is the best-found fitness location by
particle i at timestep k, which represents the cognitive contribution to the search vector vik+1. p

g
k

is the global best-found position among all particles in the swarm at time k and forms the social
contribution to the velocity vector. Fitness values assigned to pik and pgk are denoted f ibest and
f gbest, respectively. Random numbers r1 and r2 are uniformly generated in the interval [0, 1]. Shi
and Eberhart [16] proposed that the cognitive and social scaling parameters c1 and c2 be selected
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Table I. Particle swarm algorithm parameters.

Parameter Description Value

p Population size (number of particles) 20
c1 Cognitive trust parameter 2.0
c2 Social trust parameter 2.0
w0 Initial inertia 1
wd Inertia reduction parameter 0.01
� Bound on velocity fraction 0.5
vd Velocity reduction parameter 0.01
d Dynamic inertia/velocity reduction delay (function evaluations) 200

such that c1 = c2 = 2 to allow the product c1r1 or c2r2 to have a mean of 1. The result of using
these proposed values is that the particles overshoot the target half the time, thereby maintaining
separation in the group and allowing for a greater area to be searched. The variable wk , set to
1 at initialization, is a modification to the original PSO algorithm [16]. By reducing its value
dynamically, Fourie and Groenwold [17] suggested that a more refined search can be enforced by
observing the fitness improvement rate. At the initialization time step k = 0 particle velocities vi0
are initialized to random values within the limits 0�vi0�vmax

0 . The particle velocity upper limit
vmax
0 is calculated as a fraction of the distance between the upper and lower bound on variables in

the design space vmax
0 = �(xUB − xLB) with � = 0.5 as suggested in [17].

The impact of population size on the performance of the PSO algorithm was previously
investigated by Carlisle and Dozier [18] and Shi and Eberhart [16], among others. Carlisle and
Dozier showed that, for some of the test problems evaluated in their paper, a certain minimum
threshold on population size is required for reliable convergence. They also showed that increasing
the swarm size excessively beyond this value results in decreased algorithm efficiency. We evaluate
the efficiency of the multi-run strategy by comparing this approach with the two alternatives of
increased population size or allowing an increased number of algorithm iterations. To this end
we solved each test problem with different population sizes for a very high number of fitness
evaluations. No effort was made to fine tune the algorithm to a particular problem in this study
and standard parameters were utilized as reported in Table I.

2.2. Analytical test set

The convergence behaviour of the PSO algorithm was analysed with the Griewank [19], Shekel [20]
and Hartman [20] analytical problems (see Appendix A for problem definitions), each of which
possess multiple local minima. Analytical test problems were used because global solutions f ∗ are
known a priori. The known solution value allows us to ascertain if an optimization has converged
to the global minimum. To estimate the probability of converging to the global optimum, we
performed 1000 optimization runs for each problem, with each run limited to 500 000 fitness
evaluations. These optimization runs are performed with identical parameter settings, with the
exception of a different random number seed for each run to start the population at different initial
points in the design space. To evaluate the global convergence probability of the PSO algorithm
as a function of population size, we solved each problem using a swarm of 10, 20, 50 and 100
particles. We assumed that convergence to the global optimum was achieved when the fitness value
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Table II. Problem convergence tolerances.

Convergence
Problem tolerance �t

Griewank 0.1
Shekel 0.001
Hartman 0.001
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Figure 2. Stepped cantilever beam.

was within a predetermined fixed tolerance �t (see Table II) of the known global optimum f ∗

f � f ∗ + �t (3)

For the Shekel and Hartman problems, the tolerance ensures that the minimum corresponding to
the global optimum for the problem has been found. That is, because � �= 0 the exact optimum
is not obtained, but if a local optimizer is started from the PSO solution found with the given
tolerance it will converge to the global optimum. For the Griewank problem, however, starting a
local optimizer at the PSO solution will not guarantee convergence to the global optimum, since
this noisy, shallow convex problem has several local minima grouped around the global optimum
that will defeat a local optimizer.

2.3. Structural hollow beam optimization

As an example of a practical engineering problem we present the maximization of tip displacement
of a stepped hollow beam (Figure 2). This problem proves difficult to solve even when using global
optimization algorithms due to the presence of multiple local minima.

The stepped cantilever beam consists of five sections, each section defined by four design
variables, width (w), height (h), top and bottom wall thickness (th) and left and right wall
thickness (tw) (see Figure 3). A load P with y-direction component Py and z-direction component
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Figure 3. Beam cross-section parameters.

Pz is applied to the tip of the beam. The tip displacement of this prismatic cantilever beam is
maximized subject to a material stress constraint in addition to aspect ratio constraints, detailed
below. It is the aspect ratio limit (it must be between 0.2 and 5) that creates the local optima.
Each section is most flexible when the aspect ratio is at its limit but it is possible for the height
to be five times the width or vice versa. The feasible region bound by aspect ratio constraints for
section 5 of the beam is illustrated in Figure 4, with the two possible solutions indicated. The
global optimum is achieved when all five sections have the same aspect ratio, and there are several
local optima corresponding to different combinations of extreme height to width ratios for the five
sections that are not aligned.

Equations describing tip displacement contributions �yi and �zi for each beam section i can be
obtained using Castigliano’s method

�y =
∫ L

0

M

E I

�M
�P

dx

=
∫ l5

0

Pyx25
E Iz5

dx +
∫ l4

0

Py(x4 + l5)2

E Iz4
dx +

∫ l3

0

Py(x3 + l5 + l4)2

E Iz3
dx

+
∫ l2

0

Py(x2 + l5 + l4 + l3)2

E Iz2
dx +

∫ l1

0

Py(x1 + l5 + l4 + l3 + l2)2

E Iz1
dx (4)

where E is the Young’s modulus and Iz1 through Iz5 are the moment of inertia’s about the neutral
z-axis of the particular beam section under consideration.

If we choose l1 = l2 = l3 = l4 = l5 = 1, Equation (4) becomes

�y = Py
3E Iz5

+ 7Py
3E Iz4

+ 19Py
3E Iz3

+ 37Py
3E Iz2

+ 61Py
3E Iz1

= �y5 + �y4 + �y3 + �y2 + �y1 (5)
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Figure 4. Tip deflection contour plot as a function of beam section 5 with height h, and width w
with yield stress and aspect ratio constraints indicated by dashed and dash dotted lines, respectively.
Crosses indicate the two solutions (one dominated by bending in y-axis, and the other in the

z-axis) for maximum tip displacement.

Similarly the displacement in the z-direction is

�z = Pz
3E Iy5

+ 7Pz
3E Iy4

+ 19Pz
3E Iy3

+ 37Pz
3E Iy2

+ 61Pz
3E Iy1

= �z5 + �z4 + �z3 + �z2 + �z1 (6)

yielding a total tip deflection of

� =
√

�2y + �2z (7)

For the tip deflection formulation stated (7) there are 2 possible optima yielding the maximum
displacement (all sections at aspect ratio 0.2, or all at 5). For the purpose of clearly identifying the
global minimum in this work we desire the maximization of the tip deflection to favour only one
of the possible solutions, and therefore reformulate the maximization to be in a fixed direction �

max
w1,h1,tw1,th1,w2,h2,...,tw5,th5

� = �y cos � + �z sin � (8)

We choose � = �/3, which biases the tip deflection in the y direction. With the bias in the y
direction, a section with hi � wi is preferred to a section with wi � hi . However, both are more
effective than a section with wi = hi , which creates two local optima for each section.

The tip deflection maximization is subject to the stress constraints for each beam section i (with
the allowable stress reduced by safety factor SF). The stresses are calculated at the root of each
beam segment, at a maximum distance from the bending axis (i.e. the four corners of each root
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cross-section) using the Euler–Bernoulli beam equations

�i − �allow
SF

� 0(
Myh

2Iz

)
i
+
(
Mzw

2Iy

)
i

− �allow
SF

� 0
(9)

where My and Mz are the bending moment introduced at the base of section i by Py and Pz
respectively. In the above equation

Iyi = 2

[
thi (wi − 2twi )

3

12
+ hi t3wi

12
+ twi hi

(
wi − twi

2

)2
]

Izi = 2

[
(wi − 2twi )t3hi

12
+ twi h3i

12
+ thi (wi − 2twi )

(
hi − thi

2

)2
] (10)

In addition to the stress constraints the aspect ratio of each beam segment is limited to

0.2�wi

hi
�5 (11)

The hollow cavity along the axial direction and lower bounds on wall thicknesses are accom-
modated through the following geometric constraints:

0.01� thi�
hi
4

0.01� twi�
wi

4

(12)

The above constraints are then normalized

g1 =
[
�i
/(�allow

SF

)]
− 1�0

g2 = 4thi
hi

− 1�0

g3 = 4twi

wi
− 1�0

g4 = 1 − thi
0.01

�0

g5 = 1 − twi

0.01
�0

g6 =
[(

wi

hi

)/
5

]
− 1�0

g7 =
[(

hi
wi

)/
5

]
− 1�0

(13)

This yields seven constraints per section, for a total of 35 constraints. The beam material
properties and applied load is given in Table III.
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Table III. Beam material properties and end load
configuration.

Material property Value

Young’s modulus E 72e9 Pa
Safety factor SF 3
Allowable stress �allow 505e6 Pa
l1, l2, l3, l4, l5 1m
Py 3535.5N
Pz 3535.5N

Due to the PSO’s poor local search ability [21] a hybrid approach was used where the final
solution of a swarm optimization was used as a starting point of a local search (Sequential Quadratic
Programming).

2.4. Multiple-run methodology

The use of multiple optimizations for genetic algorithms was proposed by Le Riche and Haftka [14].
However, no criterion was given on the division of computational resources between the multiple
optimizations. The method entails running multiple optimizations with a reduced number of fitness
evaluations, either by limiting the number of algorithm iterations or reducing the population
while keeping the number of iterations constant. Individually, the convergence probability of each
optimization run may only be a fraction of a single traditional optimization run. On the other hand,
the cumulative convergence probability obtained by combining the limited runs can be significantly
higher than that of the single traditional run. Previously, similar studies have been undertaken to
investigate the efficiency of repeated optimizations using simple search algorithms such as pure
random search, grid search and random walk [22, 23]. The use of multiple local optimizations
or clustering [24] is a common practice but for some algorithms the efficiency of this approach
decreases rapidly when problems with a high number of local minima are encountered [22].

For estimating the efficiency of the proposed strategy and for comparison with optimizations with
increased populations/allowed iterations, we are required to calculate the probability of convergence
to the global optimum for an individual optimization run, Pi . This convergence probability cannot
be easily calculated for practical engineering problems with unknown solutions. For the set of
analytical problems, however, the solutions are known and a large number of optimizations of these
problems can be performed at little computational cost. With some reasonable assumptions these
two facts allow us to estimate the probability of convergence to the global optimum for individual
optimization runs. The efficiency and exploration run considerations derived from the theoretical
analytical results are equally applicable to practical engineering problems where solutions are
not known a priori. The first step in calculating Pi is using the convergence ratio, Cr, which is
calculated as follows:

Cr = Nc

N
(14)

where Nc is the number of globally converged optimizations and N is the number of optimizations,
in this case 1000. For a very large number of optimizations, the probability Pi that any individual
run converges to the global optimum approaches Cr. For a finite number of runs, however, the
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standard error se in Pi can be quantified using

se =
√

Pi (1 − Pi )

N
(15)

which is an estimate of the standard deviation of Cr. For example, if we obtain a convergence
probability of Pi = 0.5 with N = 1000 optimizations, the standard error would be se = 0.016.

To obtain the combined cumulative probability of finding the global optimum by multiple
independent optimizations we apply the statistical law for calculating the probability of success
with repeated independent events. We denote the combined or cumulative probability of N multiple
independent optimization runs converging to the solution as Pc. Then using the fact that the
convergence events are uncorrelated, Pc can be found from

Pc = 1 −
N∏
1

(1 − Pi ) (16)

where Pi is the probability of the i th individual optimization run converging to the global optimum.
If we assume that individual optimization runs with similar parameter settings, as in the case of
the following study, have equal probability of convergence, we can simplify Equation (16) to

Pc = 1 − (1 − Pi )
N (17)

The increase in cumulative probability Pc for fixed values of Pi as a function of increasing
number of optimization runs N is illustrated in Figure 5. It must be stressed that the above
relations are only valid for uncorrelated optimizations, which may not be the case when a poor
quality random number generator is used to generate initial positions in the design space. Certain
generators can exhibit a tendency to favour regions of design space, biasing the search and
probability of convergence to a minimum in these regions.

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of runs

C
on

ve
rg

en
ce

 r
el

ia
bi

lit
y

0.0 

0.1 

0.2 

0.3 0.4 

0.5 0.6 

0.7 

0.8 
0.9

1.0 

Figure 5. Cumulative convergence probability Pc as a function of the number of optimization
runs with assumed equal Pi values.
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2.5. Exploratory run and budgeting scheme

Using the multiple run methodology requires a budget strategy by which to divide a fixed number
of fitness evaluations among the independent optimization runs. The budget of fitness evaluations
nb is usually dictated by how much time the user is willing to allocate on a machine to solve a
problem divided by how long a single fitness evaluation takes to execute. The proposed budget
strategy is based on two assumptions. The first is that each run should be limited to a number of
function evaluations corresponding to the stage in the algorithms when progress is relatively rapid.
The second assumption is that for a given problem and algorithmic settings the number of function
evaluations in this stage does not vary drastically from one run to the next, in other words some
runs stall far from the global optimum while others terminate near it. An exploratory optimization
utilizing a fraction of nb, denoted ne is required to determine the length of the rapid-progress
stage. The fitness history of this optimization is used to obtain an estimate of the number of fitness
evaluations to be allocated to each run ni . For the problems used in this study, Figure 5 shows that
the second assumption holds. The figure also shows a strong correlation between the point where the
fitness history levels off (end of rapid-progress stage) and the point where the convergence history
levels off (Figure 6). Consequently, it appears reasonable to assume that the algorithm will either
converge quickly to the optimum or stall at a similar number of fitness evaluations for optimizations
started at different initial positions (Figure 7), which motivates the first assumption above.

This exploratory run is stopped using a criterion that monitors the rate of change of the objective
fitness value as a function of the number of fitness evaluations. As soon as this rate of improvement
drops below a predetermined value (i.e. the fitness value plot levels off), the exploratory optimization
is stopped and the number of fitness evaluations noted as ne. The selected stopping criterion was
a change of less than 0.01 in fitness value for at least 500 function evaluations. With nb and ne
known, it is easy to calculate the number of independent optimizations to be performed, N , as
well as the number of fitness evaluations per run ni . After the exploratory optimization of ne the
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Figure 6. Fitness history and convergence probability Pc plots for Griewank, Hartman and Shekel problems.
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Figure 7. Typical Shekel fitness history plots of 20 optimizations (sampled out of 1000).

remainder of the budgeted fitness evaluations is distributed among a number of N independent
optimizations, which may be calculated as follows:

N =
⌊
nb − ne

ne

⌋
(18)

with an allowed number of fitness evaluations per run calculated by

ni =
⌊
nb − ne

N

⌋
(19)

If a multi-processor machine is available, very high Pc values may be reached using a multiple
run strategy. If we take the simple case where each independent optimization run is assigned
to a separate node, the multiple run approach will be constrained somewhat differently than the
previous single-processor case. Rather than the number of multiple optimizations being limited by a
fixed budget of fitness evaluations (which is divided equally among the set of multiple independent
optimizations using Equation (18)), the number of optimization runs will be defined by the number
of computational nodes and the wall clock time available to the user. A similar method to that
followed for a single processor machine for determining algorithm/problem behaviour must still
be followed to determine the optimal number of fitness evaluations for a single optimization run.
This exploratory run can, however, be done using a parallel implementation of the population-
based algorithm under consideration, in which concurrent processing is achieved through functional
decomposition [15].

2.6. Bayesian convergence probability estimation

To estimate the probability that the global optimum has been reached at the end of the process,
a Bayesian convergence probability estimation method may be used, as proposed by Groenwold
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and Snyman [25] and Groenwold and Hindley [26]. The probability that the best solution found
among all optimizations f̃ will be the global solution f ∗ is given in [26] as

Pr[ f̃ = f ∗]�1 − (N + a)!(2N + b)!
(2N + a)!(N + b)! (20)

where N is the total number of optimizations performed, and a = a + b − 1, b= b − Nc − 1 with
a, b suitable parameters of a Beta distribution �(a, b). Values of parameter a and b were chosen
as 1 and 5, respectively, as recommended by Groenwold and Hindley [26].

3. NUMERICAL RESULTS

3.1. Multi-run approach for predetermined number of optimizations

For the three problems under consideration only a limited improvement in global convergence
probability is achieved by applying the traditional approaches of increasing the number of fitness
evaluations or the population size (Figure 8). For the Shekel problem, using larger swarm sizes
and/or allowing an increased number of fitness evaluations yielded higher convergence probabilities
only up to a point. Similar results were obtained for the Griewank and Hartman problem cases. On
the other hand, optimizations with a small number of particles reached moderate global convergence
probabilities at significantly fewer fitness evaluations than did optimizations with large swarms.
This behaviour was observed for all the problems in the test set (Figure 6). To exploit this behaviour
we replace a single optimization with several PSO runs, each with a limited population and number
of iterations. These individual optimizations utilize the same amount of resources allocated to the
original single optimization (in this case the number of fitness evaluations).
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Figure 8. Shekel convergence probability for an individual optimization as a function of fitness
evaluations and population size.
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Figure 9. Theoretical cumulative convergence probability Pc as a function of the number of optimization
runs with constant Pi for the Hartman problem. Multiple independent runs are with 10 particles.

Table IV. Theoretical convergence probability results for Hartman problem.

Number of Cumulative convergence Cumulative
runs n probability Pc fitness evaluations

1 0.344 10 000
2 0.570 20 000
3 0.718 30 000
4 0.815 40 000
5 0.879 50 000
6 0.920 60 000
7 0.948 70 000
8 0.966 80 000
9 0.978 90 000

10 0.985 100 000

To illustrate the merit of such an approach we optimize the Hartman analytical problem with and
without multiple limited optimizations. We observe that for a single optimization the probability
of convergence is not significantly improved by allowing more fitness evaluations, or by increasing
the population size (Figure 9). We also observe that an optimization with 10 particles quickly
attains a probability of convergence of Pi = 0.344 after only 10 000 fitness evaluations. Using a
multiple run strategy with 10 independent optimizations of 10 000 fitness evaluations yields the
theoretical Pc values reported in Table IV (calculated using Equation (17) with Pi = 0.344 and
n = 1, . . . , 10). These values are indicated as circled data points at a sum equivalent number of
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fitness evaluations in Figure 9 for comparison with a single extended optimization. The cumulative
convergence probability Pc using multiple optimizations is far superior to that of using a single
optimization run of up to 100 particles.

3.2. Multi-run efficiency

To investigate the most efficient manner in which to divide a budget of fitness evaluations among
multiple independent optimizations, we compare the efficiency of the 2, 5, 10 and 12 independent
optimizations of the Griewank problem (Figure 10). A budget of 200 000 fitness evaluations is
allowed for optimizing this problem. This results in each optimization in the set being stopped at
ni = 100 000, 40 000, 20 000 and 16 500 fitness evaluations. It can be seen that using a combination
of independent runs with high Pi values (with a high number of the associated of fitness evaluations)
or multiple runs with low Pi values will not yield the same efficiency (as defined by Pc per fitness
evaluation). If the predicted Pc values are plotted on the same graph (Figure 10) it is observed that
the two combinations of 5 and 10 optimizations yield the highest Pc values for a given number of
fitness evaluations. In both cases the independent runs are stopped at a number of fitness evaluations
close to the point where Pi levels off.

The dependence of efficiency on the choice of ne can be explained as follows: if the independent
optimization is stopped prematurely it will result in very low values of Pi . Although a greater
number of independent optimizations may then be performed within the single processor budget
(Equation (18)) it may still result in very poor efficiency, such as the 12 independent run case in
Figure 10. If on the other hand an excessive amount of fitness evaluations are allowed for each
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Figure 10. Predicted convergence probability Pc with sets of multiple runs for the Griewank problem.
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Table V. Minimum, maximum and median fitness evaluations when
applying ratio of change stopping criteria on pool of 1000 optimizations

for Griewank, Hartman and Shekel problems.

Problem Minimum ne Median ne Maximum ne

Griewank 23 480 31 810 45 780
Hartman 14 180 16 440 23 360
Shekel 15 460 18 660 35 860

independent run the strategy also suffer since only a reduced number of optimizations can then be
performed (see the 2 independent run case in Figure 10). To maximize the efficiency of the multi-
run strategy it is therefore desirable to allow only a number of fitness evaluations corresponding
to the point where Pi starts levelling off.

From the above we can conclude that to obtain maximum efficiency, the individual runs should
be terminated after reaching a number of fitness evaluations near the point where Pi starts levelling
off. The exact Pi convergence probability data, however, is not available unless a great number
of optimizations are performed, and must be estimated. This estimation is done by observing
where the fitness history of a single optimization starts levelling off. The impact and robustness of
using a single exploratory optimization fitness history to determine ni for each optimization was
investigated for all three analytical problems. The exploratory optimization was stopped using a
rate of change stopping criteria, and N and ni was calculated using (18) and (19). To verify that
a single optimization will be sufficient to give robust results the rate of change stopping criteria
was applied to the pool of 1000 optimizations for each of the three analytical test problems, and
yielded minimum, maximum and median values of ne reported in Table V. The fitness evaluation
history plots for minimum and maximum ne values and corresponding convergence probability
plots are given in Figure 11. It can be seen that applying the rate of change stopping criteria on
a single run to estimate ne gives fairly robust results, with only a small variation in Pc efficiency
for all analytical problems.

3.3. Stepped cantilever beam

The optimization of the stepped cantilever beam was first performed with the Matlab fmincon
function, an implementation of the sequential quadratic programming algorithm. A total of 100
optimizations were performed, each started in a random location in the 20-dimensional search
space. The resultant tip deflection solutions were sorted in an ascending fashion and plotted in
Figure 12. Only one out of the 100 optimizations reached the optimal tip displacement value
of 0.7545, with a median tip displacement result of 0.2707. Several plateaus can be seen in
this figure, each indicating several optimizations which converged to the same local maximum.
The PSO algorithm was then applied to this problem, with only 100 optimizations performed
due to the computational cost associated with this global optimization algorithm. A total budget
of 4 000 000 fitness evaluations, which translated to 40 000 fitness evaluations per optimization
were allowed. Tip deflection solutions are again sorted in an ascending fashion and given in
Figure 13. This yielded an improved median tip displacement of 0.6134. In an attempt to improve
over the results obtained using only PSO or fmincon, a hybrid of the two is applied to the problem.
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Figure 11. Predicted convergence probability Pc using information from exploratory optimizations which
are stopped using a rate of change stopping condition for the Griewank, Hartman and Shekel problems.
A solid line with circled datapoints denotes using the longest exploratory run in the pool of 1000
optimizations, and a dashed line with triangular datapoints denote using the shortest. The solid line
indicate convergence probability calculated using Equation (14) for the 1000 optimizations as a function

of the number of fitness evaluations.

This approach used the PSO as an initial search method to roughly pinpoint the approximate
location of the global optimum, and then transitions to the fmincon search function to perform a
localized search. Again, due to the required computational effort to solve the problem only 100
optimizations are performed, with 40 000 evaluations per optimization. A marked improvement in
the solution quality is observed when using the hybrid approach, as compared to fmincon (Figure
12) or PSO only (Figure 13) with the median tip displacement improved to 0.6442. Three optimiza-
tions out of the 100 obtained the optimum displacement of 0.7545 (upper plateau in Figure 13)
(Table VI).

To investigate if the allowed budget of fitness evaluations can be more efficiently applied the
multiple-run methodology is applied to the stepped cantilever beam problem (Figure 14). In order
to investigate the sensitivity of using a single exploratory run, the previous results for 100 hybrid
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Figure 12. Results for 1000 fmincon optimizations. Tip deflection values sorted ascending and
plotted as a function of optimizations. Flat areas in the graph represent optimizations which

converged to the same local minimum.
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Figure 13. Tip deflection results for 100 PSO and PSO–fmincon hybrid optimizations. Ordinate
normalized to global optimal tip displacement.
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Table VI. Median solution out of 1000 fmincon optimizations using
random starting points.

Median solution tip
Optimal tip deflection deflection

contributions contributions

Section 1 0.2579 0.0001
Section 2 0.2107 0.2107
Section 3 0.1588 0.0000
Section 4 0.1004 0.0599
Section 5 0.0267 0.0000
Total tip deflection 0.7545 0.2707
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Figure 14. Stepped cantilever beam: sample of 20 fitness histories.

runs were processed by applying the rate of change criteria of 0.001 in the displacement over 2000
iterations. Among the 100 hybrid optimizations a minimum ne value of 6743 fitness evaluations,
a median of 13 685 and a maximum 27 662 were obtained. Applying Equations (18) and (19)
to these results with a total budget of nb = 4000 000 fitness evaluations required N = 592, 291
and 143 optimizations for the budget strategy, each allocated ni = 6745, 13 698 and 27 778 fitness
evaluations, respectively. Performing these optimization runs resulted in 3, 8 and 14 optimization
converging (out of 592, 291 and 143), with corresponding convergence ratios (using Equation (14))
of 0.51, 2.75 and 9.8%. These rapidly rising percentages level off, though, because 10 runs with
400 000 evaluations each did not yield a single optimal result, which suggests that the convergence
rates levels off near 10%. With a reduced budget of 400 000 function evaluations, we can perform
59, 29, and 14 of the shorter-run optimization, respectively. Using Equations (16), 59 runs with 6745
function evaluations should give us 26% probability of finding the optimum, 29 runs with 13 698
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Figure 15. Bayesian Pc estimation in comparison to using extrapolated and randomly sampled optimizations
out of pool of 1000 runs for Griewank problem.

function evaluations will give us 55% probability, and 14 runs with 27 778 function evaluations
should give us 76% probability.

3.4. Bayesian convergence probability estimation

The Bayesian scheme (Equation (20)) indicates s consistently conservative estimation of the
cumulative convergence probability for the Griewank (Figure 15), Hartman (Figure 16), and Shekel
(Figure 17) problems. In order to show the accuracy of this method as the Pc values approach 1 the
probability of failure (1− Pc) is indicated on a logarithmic ordinate axis. The Bayesian estimation
method is sensitive to the problem and type of optimization algorithm under consideration, and
values of a and b parameters in the Beta distribution require fine tuning to obtain a more accurate
estimation. The parameters recommended by Groenwold and Hindley [26], however, yield a con-
sistently conservative estimation of the confidence level. A possible exception to this may occur
when several local minima are present which will satisfy the condition given in Equation (3) if �t
is not chosen to be small enough to exclude these, as is the case for the Griewank problem. Any
of these local optimum will then be considered a global optimum in the convergence probability
estimation. The results suggest the Bayesian prediction of Pc may be useful when confidence in the
solution is traded-off with the optimization time, on either a single or parallel processor machine.

For the stepped cantilever beam the Bayesian probability prediction yielded the curve reported
in Figure 18. From this figure it can be seen that although the global solution value was found
(indicated by the normalized dark curve) during the 27th optimization the convergence probability
estimation only jumped to unity probability after 63 optimizations.
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Figure 16. Bayesian Pc estimation in comparison to using extrapolated and randomly sampled optimizations
out of pool of 1000 runs for Hartman problem.
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Figure 17. Bayesian Pc estimation in comparison to using extrapolated and randomly sampled optimizations
out of pool of 1000 runs for Shekel problem.
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Figure 18. PSO-hybrid-stepped beam convergence probability estimation using Bayesian criteria.

4. CONCLUSIONS

The basic premise of this paper is that for a given problem and global optimizer settings, different
runs may have substantially different outcomes, but they all start with initial rapid progress followed
by much slower progress later on. Furthermore, we assume that the number of function evaluations
to the end of the rapid progress stage does not change drastically from one run to another for a given
problem and algorithmic setting. Therefore we propose that the number of function evaluations
required for this rapid-progress stage be estimated with one or two runs, and then the same number
of function evaluations be allocated to multiple searches. Three often used analytical problems
were used to demonstrate the utility of this multi-run strategy for substantially increasing the
probability of convergence to the global optimum for PSO. The multi-run strategy was then used
for an engineering design problem with 32 local optima, which challenges the PSO. For the set
of large scale optimization problems evaluated with the PSO, the multi-run strategy with small
PSO populations delivers higher global convergence probability than a single run with a large
population and an equal number of fitness evaluations. On both serial and parallel machines, a
fraction of the allocated budget of fitness evaluations or computer time is required to evaluate the
optimizer/problem behaviour. This exploratory optimization is terminated using a rate of change
stopping criteria. The number of fitness evaluations required by exploratory run is used to calculate
the total number of runs and the remainder of the budget of evaluations is divided among them. This
approach allows the strategy to utilize the computational resources efficiently, preventing premature
termination or wasted fitness evaluations on already converged optimizations. Close correlation
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between theoretically predicted cumulative convergence probability and the experimentally sampled
probability is obtained for the strategy on a single processor machine.

When applied to the challenging engineering problem of maximizing the tip deflection of a
stepped cantilever beam, the PSO and a PSO–fmincon hybrid only had limited success using an
equally divided budget of 4 000 000 allowed fitness evaluations. Using the proposed budgeting
strategy, however, yielded an equivalent average performance, with up to three times the conver-
gence probability in cases where the rate of change stopping criteria estimated conservatively. It is
recommended that more than one exploratory optimization should be performed when using this
strategy, and the more conservative fitness evaluations per run value be used.

A Bayesian convergence probability estimation method may be used to stop a serial or parallel
optimization when optimization reliability is traded-off with time for optimization. This Bayesian
prediction of the cumulative convergence probability is consistently conservative for all the prob-
lems tested when using parameters recommended in the literature.

Very high global convergence probabilities can be achieved in a limited time span on a massively
parallel machine using the multi-run strategy. Although it may sometimes be impossible to find
the global solution to an intractable large-scale engineering problem this strategy will allow the
user to obtain high quality approximate solutions.

APPENDIX A

A.1. Griewank [7]
Objective function

f (x)=
n∑

i=1

x2i
d

−
n∏

i=1
cos

(
xi√
i

)
+ 1 (A1)

with n = 10 and d = 4000.
Search domain D ={(x1, x2, . . . x10) ∈ R10 : −600�xi�600, i = 1, 2, . . . , 10}.
Solution: x∗ = (0.0, 0.0, . . . , 0.0), f ∗ = 0.0.

A.2. Hartman 6 [8]
Objective function

f (x)= −
m∑
i=1

ci exp

(
−

n∑
j=1

ai j (x j − pi j )
2

)
(A2)

Search domain D ={(x1, . . . , x6) ∈ R6 : 0�xi�1, i = 1, . . . , 6}.
Solution (with m = 4): x∗ = (0.2017, 0.1500, 0.4769, 0.2753, 0.3117, 0.6573), f ∗ = −3.322368.
See Table A1 for values of ai j , ci , andpi, j .

A.3. Shekel 10 [8]
Objective function

f (x)= −
m∑
i=1

1

(x − ai )T(x − ai ) + ci
(A3)
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Table A1. Hartman problem constants.

ai j ci

10.0 3.0 17.0 3.5 1.7 8.0 1.0
0.05 10.0 17.0 0.1 8.0 14.0 1.2
3.0 3.5 1.7 10.0 17.0 8.0 3.0

17.0 8.0 0.05 10.0 0.1 14.0 3.2

pi j

0.1312 0.1696 0.5569 0.0124 0.8283 0.5886
0.2329 0.4135 0.8307 0.3736 0.1004 0.9991
0.2348 0.1451 0.3522 0.2883 0.3047 0.6650
0.4047 0.8828 0.8732 0.5743 0.1091 0.0381

Table A2. Shekel problem constants.

i ai ci

1 4.0 4.0 4.0 4.0 0.1
2 1.0 1.0 1.0 1.0 0.2
3 8.0 8.0 8.0 8.0 0.2
4 6.0 6.0 6.0 6.0 0.4
5 3.0 7.0 3.0 7.0 0.4
6 2.0 9.0 2.0 9.0 0.6
7 5.0 5.0 3.0 3.0 0.3
8 8.0 1.0 8.0 1.0 0.7
9 6.0 2.0 6.0 2.0 0.5

10 7.0 3.6 7.0 3.6 0.5

Search domain D ={xi ∈ R4 : 0�xi�10, i = 1, . . . , 4}.
Solution (with m = 10): x∗ = (4.00074671, 4.00059326, 3.99966290, 3.99950981), f ∗ =

−10.536410.
See Table A2 for values of ai and ci .

NOMENCLATURE

Pi individual optimization run global convergence probability
Pc combined multiple optimization global convergence probability
Cr convergence ratio
N number of optimization runs
Nc number of globally converged optimization runs
nfe number of fitness evaluations
nb budget of fitness evaluations allocated to solving problem
ni allowed fitness evaluations for each independent optimization
ne number of fitness evaluations required in exploratory optimization
se standard error
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