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As the complexity of musculoskeletal models continues to increase, so will the computational demands
of biomechanical optimizations. For this reason, parallel biomechanical optimizations are becoming
more common. Most implementations parallelize the optimizer. In this study, an alternate approach is
investigated that parallelizes the analysis function (i.e., a kinematic or dynamic simulation) called
repeatedly by the optimizer to calculate the cost function and constraints. To evaluate this approach, a
system identification problem involving a kinematic ankle joint model was solved using a gradient-
based optimizer and three parallel decomposition methods: gradient calculation decomposition,
analysis function decomposition, or both methods combined. For a given number of processors,
analysis function decomposition exhibited the best performance despite the highest communication and
synchronization overhead, while gradient calculation decomposition demonstrated the worst
performance due to the fact that the necessary line searches were not performed in parallel. These
findings suggest that the method of parallelization most commonly used for biomechanical
optimizations may not be the most efficient, depending on the optimization algorithm used. In many
applications, the best computational strategy may be to focus on parallelizing the analysis function.

Keywords: Biomechanical optimization; Parallel processing; Decomposition methods; Musculo-
skeletal models

INTRODUCTION

Optimization algorithms are frequently used to solve

system identification or movement prediction problems

utilizing complex musculoskeletal models [1–6]. To date,

gradient-based, simplex, simulated annealing, genetic and

particle swarm algorithms have been used for such

applications [1–9]. For large-scale problems, these

algorithms have a high computational cost since they

evaluate the cost function and constraints iteratively to

obtain a converged solution. Moreover, as the complexity

of biomechanical systems increases [e.g. increased

number of body segments, degrees-of-freedom (DOFs)

or controlled muscle forces], the computational expense of

simulating the human musculoskeletal system increases

dramatically [2]. Even with fast converging optimization

algorithms, the complexities of present-day biomechani-

cal models can require thousands of function evaluations

to achieve convergence [7,8]. Although the performance

of single-processor computers has vastly increased in

recent years, computation time can still be a limiting

factor.

To circumvent this limitation, the computational load of

biomechanical optimization problems can be decomposed

and distributed to multiple processors in a parallel

computer system. Two general approaches are possible

to develop parallel algorithms for biomechanical optimi-

zation. The first takes advantage of data independence,

an inherent characteristic of many optimization

algorithms. Most optimization algorithms evaluate an

analysis function (i.e., the cost function and constraints)

iteratively to produce a converged solution. Some of these

function evaluations have data independent characteristics

that can be parallelized. For example, research has been

done on gradient-based parallel optimization algorithms

that seek to parallelize function evaluations for finite-

difference gradient calculations [3–6,9,10]. Similarly,

sampling within the search space by non-gradient-based
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algorithms has also been parallelized [8–11]. The second

approach seeks to parallelize the analysis function itself so

that the workload is distributed to the processors with finer

granularity. Together, the optimization algorithm and

analysis function can be viewed as the upper and lower

levels, respectively, of a two-level process, where either

level can potentially be parallelized. To date, no

biomechanical studies have sought to parallelize the

lower level or both levels simultaneously.

In this paper, we describe three parallel algorithms for

biomechanical optimization and present performance

evaluations based on level of parallelization: upper level,

lower level, and both levels. The concepts are demonstrated

using a biomechanical system identification problem for a

kinematic ankle joint model. Joint positions and orien-

tations in the body segments that result in the best match to

experimental movement data are determined using an

unconstrained gradient-based optimization algorithm. The

primary emphasis of this work is to demonstrate that lower-

level parallelization can be one way to solve biomechanical

optimization problems in a reasonable amount of time.

Furthermore, it can be the best way to overcome the

computational limitations of existing upper-level parallel

optimization algorithms. We also show that two-level

parallelization can use more available resources in parallel

computer systems, even when the optimization problem

has a small number of design variables.

COMPUTATIONAL METHODOLOGY

Parallel algorithms seek to distribute the workload evenly

across available processors and then gather the results with

minimal overhead. The overhead can be communication,

synchronization, and other overhead caused by algorithm

decomposition. The workload distribution determines the

class of parallel algorithm in terms of granularity—

coarse-grained or fine-grained. Coarse-grained parallel

algorithms have less overhead than fine-grained

algorithms but at the cost of frequent load imbalance.

By contrast, fine-grained parallel algorithms are more

evenly distributed and balanced but generally suffer from

higher communication and synchronization overhead.

In this paper, three parallel algorithms are developed:

one coarse-grained, one fine-grained, and one medium-

grained. The coarse-grained parallel algorithm decom-

poses an upper-level gradient-based optimization algor-

ithm. The fine-grained parallel algorithm decomposes a

lower-level analysis function. The medium-grained

parallel algorithm decomposes both levels simultaneously

(combined approach of first two parallel algorithms).

The following sections describe the gradient-based

optimization algorithm, an ankle joint system identifi-

cation problem with corresponding analysis function, and

the decomposition methods for the three parallel

algorithms. A thorough understanding of the optimization

algorithm and analysis function is necessary to develop

parallel decomposition methods, since parallel algorithms

depend heavily on the structure of the algorithms being

decomposed. Each parallel algorithm is developed to

achieve an evenly distributed workload.

Description of Gradient-based Optimization

Algorithm

An unconstrained gradient-based optimization algorithm

(Broydon–Fletcher–Goldfarb–Shanno, or BFGS) avail-

able in commercial software (VisualDOC, VanderPlaats R

& D, Colorado Springs, CO, USA) [12] was used for the

upper-level optimization in this study. The BFGS

algorithm is a quasi-Newton method that creates an

approximation of the inverse Hessian matrix. The Hessian

matrix determines the direction used by the algorithm for

line searches. The search direction Sk and updated

design variables Xk are defined by Eqs. (1) and (2),

respectively [12]:

Sk ¼ 2H 217FðXk21Þ ð1Þ

Xk ¼ Xk21 þ akSk ð2Þ

where ak is chosen to minimize FðXk21 þ akSkÞ; H the

Hessian matrix, X the vector of design variables, F(X) a

function evaluation, and subscript k the iteration number.

The Hessian matrix is updated by information from line

searches and gradient calculations at each iteration [12].

The BFGS algorithm consists of three steps. First,

the optimizer creates an approximation of the inverse

Hessian matrix, where initially the Hessian matrix is set to

the identity matrix. Second, the optimizer calculates

gradients to determine the search direction. Third, the

optimizer performs a line search to determine how far it

can proceed along the search direction. The second and

third steps determine the search direction and line search

step size, respectively, through function evaluations.

The function evaluations for gradient calculations are

inherently parallelizable, since no data dependencies are

involved.

Description of Analysis Function

A biomechanical system identification problem was used

to evaluate three parallel decomposition methods. The

problem involves determination of patient-specific para-

meter values that permit a kinematic ankle joint model to

reproduce experimental movement data as closely as

possible [2]. Twelve parameters (treated as design

variables) specify the fixed positions and orientations of

joint axes in adjacent body segments (i.e., shank, talus,

and foot) within the three-dimensional, eight DOF

kinematic ankle model (Fig. 1). The system identification

problem is solved via a two-level optimization approach.

Given the current guess for the 12 parameters (i.e., the

model structure is fixed), the lower-level analysis function

(or sub-optimization) adjusts the generalized coordinates

in the model (i.e., the model configuration is varied) so as
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to minimize the 3D coordinate errors between modeled

and experimental surface markers. During each lower-

level optimization, the optimal solution from the previous

time frame is used to seed the subsequent time frame.

The upper-level optimization adjusts the 12 parameters

defining the joint structure so as to minimize the cost

function calculated by the lower-level optimization over

all time frames. In the present study, this is achieved using

the BFGS gradient-based optimizer.

In mathematical form, the above system identification

optimization problem can be stated as follows:

f ðxÞ ¼
p

min
Xnf

t¼1

eðp; tÞ ð3Þ

with

eðp; tÞ ¼
q

min
Xnm

i¼1

X3

j¼1

ðaijðtÞ2 bijðp; qÞÞ2 ð4Þ

FIGURE 1 Kinematic ankle joint model used in the analysis function. The model is three dimensional, possesses eight DOFs (six for the position and
orientation of the shank segment, and two for the talocrural and subtalar joints), and requires 12 parameters ( p1 through p12) to define the positions and
orientations of the joint axes in the shank, talus, and foot segment coordinate systems.
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where Eq. (3) is the cost function for the upper-level

optimization. This equation is a function of patient-

specific model parameters p and is evaluated for each of nf

recorded time frames. Equation (4) represents the cost

function for the lower-level optimization and uses a non-

linear least square algorithm to adjust the model’s DOFs q

to minimize errors between experimentally measured

marker coordinates a and model-predicted marker

coordinates b, where nm is the number of markers

whose three coordinates are used to calculate errors.

Hence, the sum of the squares of 3D marker coordinate

errors obtained from lower-level optimization of every

time frame produces the cost function for the upper-level

optimization.

Before developing parallel algorithms, performance of

a sequential optimization was evaluated to investigate

various possible decomposition methods. Fifty time

frames of numerically generated surface marker data

from previously reported isolated ankle motion experi-

ments performed with three markers on the foot and

shank were used as inputs to the optimization [9].

This approach made it possible to verify that the

optimizer recovered the known correct optimal solution.

An initial guess was used that was far from the known

solution but still within anatomically realistic bounds.

All performance results were measured on a Linux-based

PC cluster (1.33 GHz Athlons each with 256 MB memory

on a 100 Mbps switched Fast Ethernet network) in

the High-performance Computing & Simulation Research

Laboratory at the University of Florida. Total execution

time for gradient-based optimization includes time

for gradient calculation function evaluations, line

search function evaluations, and other optimization

processes (Hessian matrix updating, search direction

determination) [13,14]. The number of function evalua-

tions for gradient calculations, line searches, and total

sequential execution time is shown in Table I. Sequential

optimization for this problem requires over 850

function evaluations at a cost of 12 h of wall clock time,

with over 76% of that time due to gradient calculation

function evaluations.

Description of Decomposition Methods

Gradient Calculation Decomposition

A general approach for decomposing a gradient-based

optimization is to distribute the gradient calculation

function evaluations evenly to different processors. Since

there are no data dependencies involved in these function

evaluations, this method is commonly used for parallel

gradient-based optimization algorithms [3–6,9,10]. The

same decomposition method was implemented for the

unconstrained BFGS algorithm using VisualDOC API

functions [12] with the Message Passing Interface (MPI)

[15]. A master–slave paradigm was used where the master

processor had responsibility for running the optimizer and

distributing function evaluations.

Gradient calculation decomposition can be visualized

using a block diagram for a sample 4-processor system,

where each processor performs a finite difference evaluation

for 3 design variable sets (Fig. 2). Since the sample

system identification problem has 12 design variables,

12 independent function evaluations can be distributed to the

available processors. For each gradient calculation, the

master processor broadcasts a designvariable set (input data)

and optimization settings to the slave processors and gathers

the results upon completion using MPI send/receive

functions. Broadcast and send/receive communications

occur only once for each iteration of the upper-level

optimization. After completion of the gradient calculations,

only the master processor performs line searches while the

slave processors sit idle. Since a line search is an inherently

sequential process, it was not considered for parallelization

in this decomposition method.

Expected parallel performance of this decomposition

method depends heavily on the percentage of the time

spent on line searches. For the problem analyzed here,

TABLE I Number of function evaluations and total execution time
(wall-clock time) for sequential optimization

Gradient
calculations

Line
searches

Update
Hessian matrix/

determine search
direction Total

Number of
function
evaluations

648 203 – 851

Execution
time (s)

32,831 10,285 14 43,131

Execution time for function evaluations in gradient calculations and line searches
takes the majority of execution time (99.97%) of sequential optimization. Function
evaluations for line searches take 23.85% and gradient calculations take 76.12% of
the total execution time.

FIGURE 2 Block diagram for gradient calculation decomposition in a
4-processor system. Parallelization is performed only for the optimizer
gradient calculations. Each processor evaluates the analysis function for
all 50 time frames of data. For gradient calculations, each processor
evaluates only 3 of 12 design variable sets, while for line searches, only
the master processor (P0) repeatedly evaluates 1 design variable set.
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the parallel portion was not the entire upper-level

optimization but only three quarters of it, since gradient

calculations took 76% of sequential execution time. The

percentage of time spent on gradient calculations would be

different for other gradient-based optimization algorithms

or other problems. Even though gradient calculation time

fraction is expected to increase with the number of design

variables, line searches are still required and cannot be

parallelized easily with this decomposition method.

Analysis Function Decomposition

Analysis function decomposition is based on knowledge

of the independent nature of the sub-optimizations.

Execution time for function evaluations takes the majority

(.99%) of the total sequential execution time. According

to Amdahl’s law, performance of a parallel algorithm is

limited by the portions of the algorithm that cannot be

parallelized [16]. Since a larger percentage of analysis

function computations can be parallelized than can

optimizer computations, this decomposition method has

the potential to produce better parallel performance.

Parallel decomposition at this level required minor

modifications to the sample analysis function. As noted

earlier, the analysis function performs a separate sub-

optimization for each time frame of data, where the

solution from one time frame is used to seed the initial

guess for the next time frame. To create a parallel version

of the same functionality, the analysis function was

modified such that the seed for the sub-optimizations

was re-initialized to zero after every five time frames.

This modification permitted parallelization in blocks of

five time frames, had little effect on computational speed,

and produced no changes in optimal cost function or

design variable values to within the precision of numerical

truncation errors.

Analysis function decomposition can be visualized using

a block diagram for a sample 5-processor system, where

each processor performs sub-optimizations on 10 consecu-

tive time frames (Fig. 3). During gradient calculations, the

master processor broadcasts the same 12 design variable

sets to all slave processors, and each slave processor

executes lower-level optimizations on 2 consecutive sets of

5 time frames for each design variable set. To reduce

communication frequency, the slave processors do not send

their responses to the master processor after completion of

each design variable set. Instead, each slave processor

sequentially executes lower-level optimizations for all

12 design variable sets, stores the results, and then sends

them as a group to the master processor using MPI

send/receive functions. After receiving all responses from

the slave processors, the master processor builds up the

total response for each design variable set from the 10 time

frames analyzed by each slave processor. This approach is

used for line searches (1 design variable set) as well as

gradient calculations (12 design variable sets).

Communication overhead is larger for this approach

than with gradient calculation decomposition because

of frequent communication and large message size. The

communication frequency is approximately 6 times larger

than that of gradient calculation decomposition, since in this

case communication occurs before and after line searches as

well as gradient calculations. The communication message

size is 12 times larger when a 10-processor system is used for

analysis function decomposition compared to a 12-processor

system for gradient calculation decomposition. However,

the benefit is finer granularity than with gradient calculation

decomposition, since each processor executes only a portion

of the analysis function rather than the entire function. As a

result, every slave processor performs virtually the same

amount of work for gradient calculations and line searches

over the course of the solution.

FIGURE 3 Block diagram for analysis function decomposition in a 5-processor system. Parallelization is performed only for the analysis function.
Each processor evaluates the analysis function for only 10 of 50 time frames of data. For gradient calculations, each processor evaluates all 12 design
variable sets, while for line searches, all 5 processors repeatedly evaluate 1 design variable set.
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Combined Decomposition

Combined decomposition is a hybrid approach that

combines the benefits of gradient calculation and analysis

function decomposition. This approach can be visualized

using a block diagram for a sample 10-processor system,

where each processor performs sub-optimizations on 10

consecutive time frames for 6 design variable sets (Fig. 4).

During gradient calculations, available slave processors

are divided into groups (e.g. 2 groups of 5 processors in a

10-processor system) for gradient calculation decompo-

sition, where processors in each group execute assigned

lower-level optimizations exactly as in analysis function

decomposition. The number of groups depends on the

number of design variables, and the number of processors

in each group depends on the number of time frames used

in the lower-level optimizations. However, during line

searches, combined decomposition is identical to analysis

function decomposition, since line searches were not

parallelized. During that phase, only one group of

processors is used and the remaining processors sit idle

until the line search is completed.

This decomposition method also has larger communi-

cation overhead than does gradient calculation decompo-

sition due to high communication frequency and large

message size. However, it has less communication overhead

than does analysis function decomposition because of

relatively smaller message size and a reduced number of

processors involved in communication during line searches.

The communication frequency is the same as analysis

function decomposition, as communication occurs

before and after gradient calculations and line searches.

The communication message size is half that of analysis

function decomposition during gradient calculations, since

the 12 design variable sets are divided into 2 groups.

In addition, only half of the slave processors are involved in

communication during line searches. This decomposition

method has the advantage of using a large number of

processors even though only a small number of design

variables are used in the analysis function.

Description of Evaluation Metrics

To compare the performance of the three proposed

decomposition methods, we performed sequential and

parallel optimizations using the ankle joint system identi-

fication problem. The same initial guess and optimization

parameters, such as finite difference step size and

convergence criteria, were used in all optimizations.

FIGURE 4 Block diagram for combined decomposition in a 10-processor system. Parallelization is performed for both the gradient calculations and
the analysis function. Each processor evaluates the analysis function for only 10 of 50 time frames of data. For gradient calculations, each processor
evaluates 6 of 12 design variable sets, while for line searches, only 5 of 10 processors repeatedly evaluate 1 design variable set.
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This method ensured that the sequential and parallel

implementations produced identical results. For each

decomposition method, the number of processors (#20)

was selected to achieve an even workload distribution: 4-, 6-

and 12-processor systems for gradient calculation

decomposition, 5- and 10-processor systems for analysis

function decomposition, and 10- and 20-processor systems

for combined decomposition. The maximum number of

processors that can be used for gradient calculation

decomposition is limited by the number of design variables,

putting an upper bound on performance improvements with

this method.

For each optimization approach, performance was

quantified using three measures: total execution time,

speedup (the ratio of sequential execution time to parallel

execution time), and parallel efficiency (the ratio of

speedup to the number of processors). Speedup and parallel

efficiency are particularly important metrics. Ideally,

speedup should equal the number of processors (i.e., use

of n processors should decrease execution time by a factor

of n). In practice, this outcome is almost never achieved,

and how close the speedup is to the number of processors is

an indication of the parallel efficiency. Parallel efficiencies

that decrease rapidly as the number of processors increases

indicate increasing overhead due to communication time,

synchronization time, or the parallel algorithm itself. The

best use of computational resources is achieved when

the speedup is close to the number of processors and thus

the parallel efficiency is close to 100%.

PERFORMANCE RESULTS

Parallel decomposition at one or both levels resulted in

significant performance improvements compared to sequen-

tial optimization of the ankle joint system identification

problem. Total execution time decreased as the number of

processors increased for each of the parallel decomposition

methods (Fig. 5a). This decrease was approximately linear

with the number of processors for analysis function and

combined decomposition but not for gradient calculation

decomposition. For comparable numbers of processors,

analysis function decomposition was the fastest and gradient

calculation decomposition the slowest. Consistent with these

observations, speedup was closest to the number of

processors for analysis function decomposition and farthest

from the number of processors for gradient calculation

decomposition (Fig. 5b). Consequently, parallel efficiency

was better than 90% for analysis function decomposition

with 5 and 10 processors while it dropped from 59 to

28% for gradient calculation decomposition as the

number of processors increased from 4 to 12 (Fig. 5c).

All decomposition methods exhibited at least some decrease

in parallel efficiency with increasing number of processors.

Breakdown of execution time revealed that analysis

function computations were the major contributor

(Table II). For all three decomposition methods,

computation time varied in a manner similar to total

execution time. Optimizer time, which is the time required

by the master processor to perform optimization algorithm

TABLE II Optimizer, overhead, and computation time breakdown (in seconds) for the three parallel algorithms as a function of the number of processors

Parallel algorithms Gradient calculation decomposition
Analysis function

decomposition
Combined

decomposition

Number of processors 4 6 12 5 10 10 20
Optimizer (s) 14 14 14 14 14 14 14
Overhead (s) 25 29 86 77 155 119 198
Computation (s) 18,468 15,740 12,993 8966 4466 5481 2737

Overhead includes both communication and synchronization times.

FIGURE 5 Performance metrics for the three parallel decomposition
methods as a function of the number of processors. (a) Total execution
time due to optimizer computations, communication and synchronization
overhead, and analysis function computations. (b) Speedup—the ratio of
sequential execution time to parallel execution time. (c) Parallel
efficiency—the ratio of speedup to the number of processors. For a fixed
number of processors, analysis function decomposition provided the best
performance and gradient calculation decomposition the worst.
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tasks such as updating the Hessian matrix and determining

the search direction, was negligible and constant across all

methods. Overhead for communication and synchroniza-

tion times increased with the number of processors and

was largest for analysis function decomposition and

smallest for gradient calculation decomposition. However,

it was still small compared to computation time, never

accounting for more than 7% of total execution time.

DISCUSSION

This study has presented three approaches for decomposing

biomechanical optimization problems for parallel proces-

sing. The first decomposes optimizer gradient calculations

for distribution to multiple processors, the second

decomposes the analysis function (typically a kinematic

or dynamic simulation) called repeatedly by the optimizer

to calculate the cost function and constraints, and the third

decomposes gradient calculations and the analysis function

simultaneously. These approaches were demonstrated on

an ankle joint system identification problem using a

standard gradient-based optimizer. Though gradient

calculation decomposition is the most common [3–

6,9,10], analysis function decomposition resulted in the

most computationally efficient parallel algorithm. Some-

what surprisingly, combined decomposition performed

slightly worse than analysis function decomposition for a

comparable number of processors, indicating that the

additional work to parallelize the optimizer was not helpful

for this particular problem. Since parallelization effort is

typically spent on the optimizer rather than the analysis

function, these results suggest that future parallel

biomechanical optimization efforts should consider focus-

ing on the analysis function instead.

The main reason gradient calculation decomposition

performed the worst was our inability to parallelize line

searches. During a line search, all slave processors sat idle

while the master processor performed repeated analysis

function calls to determine how far to move in the

calculated search direction. This load imbalance grew as

the number of processors increased. Since line searches

required a significant amount of fixed execution time, total

execution time could not decrease linearly with increasing

number of processors, causing parallel efficiency to drop.

Parallelization of line searches would improve perform-

ance significantly [17,18]. For analysis functions with

a larger number of design variables, such as Anderson

and Pandy’s three-dimensional jumping simulation with

432 design variables [4], the effects of line search

inefficiencies may be diminished relative to the gradient

calculation computation time. Thus, even with gradient

calculation decomposition, speedup and parallel

efficiency may improve substantially for large-scale

problems. The other limitation of this method is that the

maximum number of processors is bounded by the number

of design variables, which is why only 12 processors were

used for this method. This limitation would also be

eliminated for large-scale problems with hundreds of

design variables, where low overhead due to communi-

cation and synchronization would become a more

significant advantage.

Analysis function decomposition performed the best

primarily because of its finer workload granularity as the

number of processors increased. Finer granularity equates

to lower likelihood of load imbalances that hurt parallel

efficiency. This decomposition method is not limited by the

characteristics of the optimization algorithm or the number

of design variables and is able to parallelize the largest

percentage of the total computations. These benefits

outweighed the larger overhead caused by frequent

communication and synchronization with large message

sizes, since the overhead was still small compared to the

required computation time. Despite these benefits, analysis

function decomposition only makes sense if the analysis

function involves computationally costly calculations such

as sub-optimizations or solution of large systems of

equations. Otherwise, communication and synchronization

overhead may negate the performance benefits of lower-

level parallelization. Furthermore, while gradient calcula-

tion decomposition can be reused without modification on

different optimization problems, analysis function

decomposition is specific to a particular problem.

Combined decomposition showed similar performance

trends to analysis function decomposition since it includes

this decomposition method in its formulation. However,

it exhibited slightly worse performance than analysis

function decomposition due to the presence of idle

processors during line searches. Though an even workload

distribution could be obtained by distributing 5 rather than

10 time frames to each processor during line searches, the

extra effort to parallelize at both levels would not produce

significant additional performance gains.

The results reported in our study are specific to gradient-

based optimizers. Non-gradient methods, such as global

genetic [8], simulated annealing [7,8] and particle swarm

[9–11] algorithms, do not have line searches. For those

methods, parallel decomposition of gradient calculations is

replaced with parallel decomposition of sampling within

the design space. Since more points in design space can be

sampled than the number of design variables, the number of

processors used for sampling decomposition is not limited

by the number of designvariables, though other factors may

limit parallel efficiency. For example, since the particle

swarm algorithm generally works best with 20 particles

(i.e., 20 sample points in the design space) regardless of the

number of design variables, use of more than 20 processors

in a parallel implementation may not produce further

performance gains [19]. The drawback of global

optimizers is the significantly greater computation time

required to obtain a solution. Thus, for problems where a

good initial guess can be obtained, gradient-based

optimizers still possess a distinct advantage in terms of

computation time.

Our results are also specific to a particular kinematic

analysis function. Parallel decomposition of our analysis
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function was facilitated by the fact that sub-optimization of

each time frame could be performed independently from

other time frames. In addition to kinematic simulations,

analysis functions involving inverse dynamics simulations

possess this desirable characteristic. In contrast, forward

dynamics simulations of human movement are difficult to

parallelize since numerical integration is a sequential

process. Wider availability of parallel numerical integra-

tors would be valuable for such applications [20].

Alternatively, forward dynamic optimization problems

can sometimes be reformulated as equivalent inverse

dynamic optimization problems [21,22], thereby permit-

ting parallelization of the analysis function directly

(see Appendix). This concept opens up a variety of

parallelization possibilities that have yet to be investigated

in the biomechanics community. It is likely that other

biomechanical optimization problems of interest could also

be reformulated to permit analysis function decomposition.

CONCLUSIONS

In summary, we have presented three parallel algorithms

for biomechanical optimization. The algorithms were

applied to a biomechanical optimization problem invol-

ving system identification of a kinematic ankle joint

model. A gradient-based optimizer was used with an

analysis function that determined the optimal alignment of

the model with experimental movement data given the

current guess at the model parameters. Parallelization of

optimizer gradient calculations resulted in the worst

performance for a fixed number of processors while

parallelization of the analysis function resulted in the best

performance. Thus, parallelization of the optimizer may

not always be the most computationally efficient choice.

Significant performance gains for gradient-based optimi-

zers would be obtained by parallelizing line searches as

well. An interesting direction for future research would be

to apply analysis function decomposition to other

computationally intensive biomechanical optimization

problems using gradient and non-gradient parallel

optimization algorithms. To reduce idle processor time,

dynamic load balancing or asynchronous parallel optimi-

zation algorithms could be explored to improve

parallel performance in heterogeneous environments

with different processor speeds. Furthermore, as the

number of processors increases, so does the likelihood of

processor failures. Thus, fault-tolerant algorithms for

parallel optimization will need to be developed and

implemented.
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APPENDIX

This appendix provides an example of how a forward

dynamic optimization problem can be reformulated

as an inverse dynamic optimization problem with

parallelization of the analysis function to predict

muscle activations and periodic motion when no

experimental data are available. This is but one additional

example of how biomechanical optimization problems

can be re-cast in a form that permits analysis function

parallelization. The reader is encouraged to think along

similar lines for other biomechanical optimization

problems of interest.

Consider a dynamic musculoskeletal model possessing

n DOFs controlled by m muscles, where FjðtÞ is the

force generated by any muscle j at time t and ajðtÞ is

the corresponding muscle activation ð0 # ajðtÞ # 1Þ:
For simplicity, assume that FjðtÞ can be computed by

scaling the muscle’s peak isometric force Fo
j by its

activation [23]:

FjðtÞ ¼ Fo
j ajðtÞ ðA1Þ

The net muscle joint torque TkðtÞ at any joint k

ðk ¼ 1; . . .; nÞ is then a linear combination of the

individual muscle forces:

TkðtÞ ¼
Xm

j¼1

rjkðtÞFjðtÞ ðA2Þ

where rjkðtÞ is the moment arm of muscle j about joint k.

In turn, the individual net muscle joint torques appear in the

equations of motion of the multibody dynamic system

(assumed to possess no closed loops for simplicity) as

indicated below:

MðqÞ €q ¼ TðqÞ þ Vðq; _qÞ þ GðqÞ þ Fðq; _qÞ ðA3Þ

where q is the n £ 1 column matrix of generalized

coordinates, M(q) the n £ n system mass matrix, T(q) the

n £ 1 column matrix due to net muscle joint torques, Vðq; _qÞ
the n £ 1 column matrix due to centripetal and Coriolis

forces, G(q) the n £ 1 column matrix due to gravity forces,

and Fðq; _qÞ the n £ 1 column matrix due to applied external

forces and torques.

Thus, given the activation ajðtÞ for each muscle j at any

time t, Eqs. (A1) and (A2) can be used to calculate T(q)

in Eq. (A3). Based on this model structure, the following

forward dynamic optimization problem could be

formulated to predict muscle activations that would

produce a periodic motion:

minimize
Xf

i¼1

Xm

j¼1

ajðtiÞ
2

 !

subject to €q¼MðqÞ21½TðqÞþVðq; _qÞþGðqÞþFðq; _qÞ�

qð0Þ¼qðtf Þ

_qð0Þ¼ _qðtf Þ

TkðtÞ¼
Xm

j¼1

rjk ðtÞFj ðtÞ;k¼ 1; . . .;n ðA4Þ

FjðtÞ¼Fo
j ajðtÞ; j¼ 1; . . .;m

ajð0Þ¼ ajðtf Þ; j¼ 1; . . .;m

0# ajðtÞ# 1; j¼ 1; . . .;m

by varying q(0)

_qð0Þ

ajðtlÞ; j¼ 1; . . .;m; l¼ 1; . . .;p

where f is the number of time frames analyzed and p is the

number of spline nodal points used to discretize each ajðtÞ

curve (normally p! f ). This cost function has been shown

by Anderson and Pandy [23] to produce muscle force

estimates that are similar to those found by minimization of

metabolic energy expenditure. The constraints enforce a

periodic (though not necessarily symmetric) motion and

bound the amplitude of the muscle activations. The design

variables are the initial conditions for each DOF along with

muscle activation nodal points. For any specified set of

design variables, the cost function and constraints in Eq. (A4)

are evaluated by calling an analysis function that performs a

forward dynamic simulation. Since there are typically more

muscles than DOFs in the model, this formulation can result

in forward dynamic optimization problems possessing

hundreds of design variables [3,4,23].

The key concept for recasting this forward dynamic

optimization problem as an inverse dynamic optimization

problem is to swap the design variables with the predicted

quantities. Instead of placing design variables on the muscle

activations and predicting the resulting motion with forward

dynamics, one places design variables on the motion and

predicts the resulting muscle activations with inverse

dynamics. The musculoskeletal model is the same regardless

of which formulation is used. The resulting inverse dynamic

optimization problem is formulated as follows:

minimize
Xf

i¼1

Xm

j¼1

aj ðtiÞ
2

 !

subject to TðqÞ ¼ MðqÞ €q 2 Vðq; _qÞ2 GðqÞ2 Fðq; _qÞ

qð0Þ ¼ qðtf Þ

_qð0Þ ¼ _qðtf Þ

with suboptimization

minimize
Xf

i¼1

Xm

j¼1

aj ðtiÞ
2 ðA5Þ
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subject toXm

j¼1

rjkðtÞFjðtÞ ¼ Tk ðtÞ; k ¼ 1; . . .; n

FjðtÞ ¼ F o
j aj ðtÞ; j ¼ 1; . . .;m

aj ð0Þ ¼ aj ðtf Þ; j ¼ 1; . . .;m

0 # ajðtÞ # 1; j ¼ 1; . . .;m

by varying q(tl), l ¼ 1, . . ., p

In the analysis function for Eq. (A5), numerical

integration of the equations of motion (forward dynamics)

is replaced with repeated algebraic solution of the

equations of motion (inverse dynamics) followed by a

sub-optimization (quadratic programming) to predict

muscle activations from net muscle joint torques. Rather

than placing design variables on the muscle activations

directly, design variables are placed on spline nodal

points describing the time histories of the generalized

coordinates. Once the q(t) nodal points are spline fit, _qðtÞ;
and €qðtÞ can be computed at any time frame using the

spline coefficients.

There are three advantages and one disadvantage of the

inverse formulation compared to the forward formulation.

The primary advantage is that the analysis function can be

easily parallelized. Once q(t), _qðtÞ and €qðtÞ are computed,

each time frame in the remaining calculations is

independent from all other time frames, making it easy

to parallelize the inverse dynamics and sub-optimization

steps across time frames. Furthermore, even the spline-

fitting step can be parallelized across DOFs. A second

advantage is that potential problems related to numerical

integration—namely system instability and numerical

stiffness—are completely eliminated. A third advantage is

a reduction in the number of design variables. The forward

formulation requires mp þ 2n design variables whereas

the inverse formulation requires only np, where m is

typically two to three times larger than n [3,4,23].

The one disadvantage is the computational cost of

repeated sub-optimizations. However, seeding the initial

guess for each time frame with the solution from the

previous time frame significantly improves convergence

speed. Overall computation time per function evaluation

may still be less with the numerical integration depending

on the number of processors available for the paralleliza-

tion, the ability to obtain stable forward simulations, and

the ability to integrate potentially stiff systems of

equations. Note also that if net muscle joint torques rather

than muscle activations are to be predicted, the sub-

optimizations are eliminated from the inverse approach

while the ability to parallelize the analysis function is

retained, making this an attractive option for such

problems [21,22].
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